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Glassy systems under time-dependent driving forces: Application to slow granular rheology
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We study the dynamics of a glassy model with infinite range interactions externally driven by an oscillatory
force. We find a well-defined transition in tliemperature-amplitude-frequengyhase diagram betweén a
“glassy” state characterized by the slow relaxation of one-time quantities, aging in two-time quantities and a
modification of the equilibrium fluctuation-dissipation relation; dimgla “liquid” state with a finite relaxation
time. In the glassy phase, the degrees of freedom governing the slow relaxation are thermalized to an effective
temperature. Using Monte Carlo simulations, we investigate the effect of trapping regions in phase space on
the driven dynamics. We find that it alternates between periods of rapid motion and periods of trapping. These
results confirm the strong analogies between the slow granular rheology and the dynamics of glasses. They also
provide a theoretical underpinning to earlier attempts to present a thermodynamic description of moderately
driven granular materials.
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[. INTRODUCTION dissipative gas, and is described by a hydrodynamic theory
In recent years, granular matter has received growing atthat takes into account energy dissipation through the colli-
tention from the physics communifit]. The study of pow- sions between the graip$,5]. In this work we shall focus on
ders is relevant not only because granular materials haviie gently driven regime, and we shall not address the
many industrial applications but also because it raises manstrongly perturbed situation.
fundamental questions of physical interest. This phenomenology is clearly reminiscent of the behav-
We call granular matter all many-body systems constidor of glass forming systems, for which the control parameter
tuted by grains of macroscopic size. The grains interact vias the temperaturd (or the densityp) [6—10. At high T
repulsive dissipative forces due to inelastic collisions andsay), the samples are in the liquid or gaseous phases. When
static friction. The thermal energy scale is totally negligible T decreases, their dynamics becomes exceedingly slow, and
with respect to the typical gravitational energy. In the ab-may even appear to stop completely during the experimental
sence of external perturbations, each metastable configurime window. However, at temperatures above but close to
tion has an infinite lifetime, and thermal averaging is meanthe glass transition, the relaxation reaches a stationary re-
ingless. The static properties of such systems are hence vegyme characterized by the decay of all correlations in two
interesting, the sandpile problem being the paradigin steps, the second decay being related to the structural relax-
Powders flow only when energy is supplied externally.ation. At temperatures below the glass transition tempera-
This can be done by applying a shear or a vibration. Thdure, the structural relaxation timg depends on the time
dynamics of granular matter presents a very rich phenomspent in the glassy phaghe “waiting time” t,,, or “age”),
enology that depends not only on the intensity of the driveand typically t,et,, [11]. A stationary regime cannot be
generically called’, but also on the way the granular systemreached experimentally. This is the aging effect which has
is driven[1]. A weak driving force can be provided by ap- been observed in a wide spectrum of glassy systems such as
plying “taps” to the systems, as has been done in the pioplastics [12], spin glasseqd13], glycerol [14], dielectric
neering experiments of the Chicago grol], where the glasseq15], complex fluids[16], phase separating systems
parametel is the reduced acceleration of the taps. Recently[17], etc.
Nicolas et al. investigated the dynamics of a powder by si- Recently, the similitude in the dynamics of granular mat-
nusoidally shearing it in a weak mann&]; I here is the ter under vibration and glass forming materials was rational-
maximal amplitude of the strain. Experiments reveal that thézed by Liu and Nage]7]. These authors proposed a phase
time evolution, in the gently driven situation, is characterizeddiagram that unifies the physics of glassy systems and granu-
by an extremely slow dynami¢2—4]. In the tapping experi- lar materials. In its simplest version, the diagram has three
ments for instance, the density still evolves aftet teps[2]. axes [T, p, I'). The (T, p) plane describes the physics of
When the energy injection is much stronger, the granulaglasses, while theg I') plane describes the one of athermal
matter eventually becomes fluid; it behaves essentially like driven systems, like powders or foams. In the ldwhighp,
smalll” region, the system is generically jammed or presents
glassy features. In this work, we focus on thgT) plane of
*Present address: LPTHE, 4 Place Jussieu, F-75252 Paris Ced#xs phase diagram. The drive aliscan represent two types
05, France. of forces: (1) “shearlike” forces that do not derive
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from a potential and hence do work on the sanjfi®; and  driving force.(Despite its name, that follows from historical
(2) “tappinglike” forces that do derive from a potential but reasons, this model represents a structural glass and not a
work on the samples when they depend on time. Bottspin glass. We then discuss how our results have to be in-
modify the dynamic behavior, and the goal is to identify terpreted in the context of granular materials.
how, and to what extent, in a general manner. One possible The paper is organized as follows. In Sec. Il, we recall the
scenario is that the age of the driven system stabilizes at @efinition and main properties of thespin glass model. Its
power dependent level, typicalty=<I" L. In rheological lan- behavior under an osplllatory .dr|ve,. for the choice of param-
guage, this is a shear-thinning behavior. Some examples afd€rsp=2 andp=3, is examined in Secs. Ill and IV, re-
given by domain growth under flojd9] or by the nonlinear spectively, in two ways: analytical and nur_nerlca_l solutions
rheology of complex fluid§20], and it has been captured by of. the spherical quel, and Monte Ce_lrlo simulations of the
a number of model§21-23. In particular, a(shear, tem-  1Sing model. We Q|scuss our results in Fhe context of slow
peratur¢ phase diagram for glassy systems was derived ir_granular rheology in Sec. V. Our conclusions close the paper
Ref. [21]. Another scenario, realized in the present paper, idn Sec. VL.
that aging is not stopped, at least in a well-delimitated region
of the phase diagram. Il. DEFINITION AND ZERO-DRIVE BEHAVIOR

The behavior of moderately driven granular matter has OF THE MODEL
received a lot of experimentf2—4,24,25, numerical9,26— ) _ o
29] and theoretical8,10,30—38 attention. All these studies ~ The sphericalp-spin glass, wherp=2, is simply the
demonstrated the glassy nature of granular compaction bé&Pherical version of the Sherrington-Kirkpatrick spin glass,
low a critical amplitude of the drivel’*. This was first re- and was introduced by Kosterlitat al. [45] as an exactly
vealed by the very slow relaxation of the density, butSolvable model. Itis in fact equivalent to ti&(n), n—,
memory experiment§24] and simulationg28,31] inspired ~ model for ferromagnetic domain growth in three dimensions.
by earlier spin glass studi¢s1,13 also gave support to this Its statics[45] and its relaxational dynamics have been ex-
conclusion. tensively studied46—48. The p=3 spherical models are

The relation between granular matter and glassy systenigstead simplified models for supercooled liquids and
is widely assumed. Indeed, many of the models proposed tglasses, in the sense that _they give a theoretical frame_v_vork to
study granular compaction are directly adapted from glassynderstand both the stati¢41,43,49 and the nonequilib-
models[8,26—29,36—3B Usually, the drivel’ in granular ~ fium dynamics[11,50 of glass forming systems. We study
matter is related to the temperatuFein glasses. However, these two cases as generic glassy models, taking advantage
the assumed relationship=T(I") between the drive and the of the fact that exact equations for their driven dynamics can
temperature is a highly nontrivial statement and there is, t&€ derived.
our knowledge, no microscopic approach that justifies this.
We do not make such an assumption hénethis respect, A. Model
Mehta et al. [8] built a phenomenological two-temperature
stochastic model based on the observation that slow granul
compaction is basically a two-step process: in this model,
short-time process stands for fast independent-particle relax-
ation, while a slow one stands for cooperative rearrange- His]= E - J
ments. The recent experiment of Nicolasal. [3] clearly 1=l2= .. <lp
proved the existence of these t@wocorrelatefiprocesses. A ) ) )
two-step process, each step thermalized with its own temwhere the couplings; ;, .. ; are random Gaussian variables
perature, is precisely the output of previous studies of th&vith zero mean and variancgl; ;, mip)zzp!/(ZN"‘l).
constantly driven dynamics of glassy systems in a thermafpe gpins{s;,i=1,... N} may satisfy a global spherical
bath [18,21], confirmed by the numerical simulation of a constraintEisiz(t)zN, or be Ising variables;=+1. In the

sheareq supercooled liqui9). . spherical version, the driven dynamics is given by the
In this paper we study the dynamics of a glassy SySte”F_angevin equation

permanently perturbed by a time-dependent Hamiltonian
force [40—42. Our aim is to identify which properties cor-
respond to those observed experimentally in granular sys- 9si(t) -
tems, and whether an effective temperature for the slow de- ot osi(t)
grees of freedom is generated in this weakly athermal

system. In some sense, our approach is “orthogonal” to prewhere the parametez(t) ensures the spherical constraint,
vious ones. We do not propose a new model for the slovand #;(t) is the thermal noise, taken from a Gaussian distri-
granular rheology, but rather ask the following simpler quesbution with zero mean and varianc&gZ". [In what follows
tion: What is the behavior of a glassy system subjected tave use units such that the Boltzmann constanis 1.] The
periodic driving forces?To answer this question, th@ (T, thermal bath temperatufiecan possibly be zero. In the Ising
w) phase diagram is explored. This is done by studying theversion one can still write down a continuous Langevin
dynamics of the, by now standard, mean-field glass modekquation by using soft spins and taking the Ising limit at the
the p-spin glass model11,43,44, under a time-dependent end of the calculations. The spherical version is simpler to

The p-spin glass model in its sphericf4] and Ising
§£3,5]] versions is defined by the Hamiltonian

igip .. .1Si;Siy - Sip @

—z()si(O)+FPAPPNY Y + (D), (2)

051302-2



GLASSY SYSTEMS UNDER TIME-DEPENDENT DRIVING . .. PHYSICAL REVIEW E3 051302

treat analytically, while the Ising version is much simpler to metry of the correlationC(t,t")=C(t’,t), and the causality
deal with using Monte Carlo simulations, since the spins ardR(t’,t)=0. In deriving these equations, a random initial
bimodal variables. condition at timet=0 has been used, which can be inter-
In order to mimic tapping experiments, a periodic time-preted as an equilibrium configuration at infinite tempera-
dependent Hamiltonian fordgd“""'N%(t) has to be added to ture. An infinitely fast quench toward the final temperatiire
the right hand side of the Langevin equati@). The sim- is performed at=0, and the evolution continues at subse-
plest periodic time dependence one can think of is a cosinquent times in isothermal conditions. The energy density
form of periodr=2m/w. Thus we are led to add a magnetic e(t)=N"%(H[s]) is related to the constraim(t) through
field in Hamiltonian(1):

1
N e(t)=—[T—z(1)]. (5
HJ[s]HHJ[s]+cos<wt)§1 hisi(t). 3) P

o ) ) ~ _In Egs.(4), the oscillatory field has been chosen to be con-
In the most realistic numerical experiments, the tapping isstant in space.

modeled by a two-step dilation-relaxation procg3fs while, In the p=2 case, the dynamics simplifies considerably
i_n more schematic models, the driving force is not explicitly since it can be solved directly from the Langevin equation
time dependenf26,28,29,31 Two types of spatial depen- (2). |ndeed, this set oN differential equations is diagonal-
dence of the field will be considered below: constamt, jzed by using the basis of eigenvectors of the symmetric
=h, for all sitesi, and randomh;h; =h?5;; . There are, how- matrix J;; . Denoting the eigenvector associated with the
ever, no physical differences between the two situationseigenvalueu, ands,=pu-sandh,=pu-h the projections of
since a spatially constant field is as decorrelated from thénhe spin and field onto the eigenvectors, one obtains
ground states of the Hamiltonidt,[s] as a random one.
s, (1)
B. Dynamical equations ot =[n—2(t)]s,(t) +h, cogwt)+ 7,(t). (6

The dynamics of the spherical version of the model is
better analyzed in terms of the autocorrelation functionHere we have considered, for convenience, a spatially uncor-
C(t,t")==(si(t)si(t'))/N and the linear response function related random field. The autocorrelation and response func-
R(t,t")=2i(si(t) 7;(t")/(2TN) since, in the thermodynamic tions become
limit N—oco, C andR verify closed Schwinger-Dyson equa-
tions which read, fot>t’ [50],

2
C(t,t’)=f dup(p)(s,(t)s,(t")),
ac(tt’) 2

n —z(t)C(t,t") e
- RLt)=o= [ dup(p)(s.(t)n,(t")), (7)
1) [t 2 “
+p(p2 )J dt"CP~2(t,t")R(t,t")C(t",t") 2T]-2
0
, where p(u)= \/4—,u2/27-r for we[—2,2], and zero other-
+ Eft dt’CP~(t,t")R(t',t") wise, is the density of eigenvalues of the random malix
2Jo The spherical condition reads(t,t)=1, and, after projec-
o tion, the amplitude of the field , is random with zero mean
+h? cos{wt)f dt” cog wt”)R(t’,t"), and variancér,h,, =h?s,, . .
0
IR(t,t) @ C. Fluctuation-dissipation relation and effective temperatures
a —Z(OR(,L") We shall be interested in the fluctuation-dissipation theo-

rem (FDT) and its possible modifications. For driven sys-
tems, we do not expect this relation to be satisfied. In equi-
librium, any correlation functionC(t,t")=(O(t)O(t")) [we
assume, without loss of generality, tH&(t))=0], and its
p2 [t associated linear responsB(t,t")=&(O(t))/5f(t")|=0,
zZ(tH)=T+ 7] dt"CPL(t,t")R(t,t") where the perturbatiohmodifies the Hamiltonian of the sys-
0 tem according tdH—H —fO, satisfy the FDT:

+

_1 t
p(p2 )J’ dt”Cp_Z(t,t”)R(t,t”)R(t”,t’),
tl

t
+h? cog wt fdt” coq wt")R(t,t"). 1 9C(t,t’
S(U) 0 iw ) ( ) R(t,t’)zf%, t=t’. (8)

These integrodifferential equations are complemented by the
equal-time condition<(t,t)=1 andR(t*,t)=1, the sym-  For nonequilibrium systems, a possible extensiof5&52]
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1 JC(t,t’) dependent numerical factor, af{t,s) is a two-time corre-
R(t,t")= - , , t=t'. (9 lation that in most cases of interest is again bounded by a
Tere(tit’) ot numerical constant. In particular, for the model we treat in

) . L . . this paper, bott\V andD?(t,s) are equal to 1. Hence, for this
Naively, this equation is simply a definition of the two-time ,o4el we have

function Tged(t,t"). This extension becomes nontrivial when

one realizes that, in the long waiting-time limit of many solv- Wi [ dC(Ls) W
able models, this function only depends on times via the " (t,s — = —
- > ds TR(t,s)|<\/7 . (12
correlation function itself: ty, Js N
TEFF(t’t,):,]—EFF[C(t’t,)]' (10)

D. Zero-drive dynamics: jammed states

By extension, it has been proposed that this exact result for and Reynolds dilatancy

solvable, mean-field-like models, will also apply to more re-  In the absence of a driving force, the model has a dynami-
alistic models with, e.g., finite range interactions. Graphi-cal transition at a§-dependentcritical temperaturd .. For
cally, a convenient way of checking this ansatz is to repreinstance,T.=1 for p=2 andT.=0.6123 forp=3. Above
sent the integrated response functiony(t,t’)  T., the equilibration time is finite, and the system reaches
Ef;,dt"R(t,t") as a function ofC(t,t') at fixedt’, and equilibrium. In this case, both time-translation invariance
parametrized by the time difference t’ [53]. Equation(10)  (TTI) and the FDT are satisfied, and Edd) reduce to a
implies that a master curv@e., independent of') x(C) is ~ mode-coupling equation for the so-called, ,; model
asymptotically reached. [11,43,6Q. The relaxation time diverges &, and, below

In the aging case, three families of models have beed., the system does not equilibrate with its environment. A
found[11]: (1) glassy models, for which thg(C) curve isa  quench from the high temperature phase toward the low tem-
broken straight line with a first piece, frol@=1 to C perature phase is followed by the aging dynamics described
=qea=lim,_.lim;_.C(t,t"), of slope—1/T and a second in Sec. |: the relaxation time increases wiffy which means
piece, fromC=qg, to C=0, of slope— 1/Tgrr, Terebeing  that the TTI is lost. The FDT is modified in the way de-
finite; (2) “domain growth models,” for which they(C)  scribed in Sec. IIC. One-time quantities have a slow relax-
curve is still a broken straight line with the second pieceation, typically power laws, and, for instance, the energy
having Tge=; and (3) spin-glass models, for which the density converges to a value(t—o=)=ey,(T) which is
x(C) curve has a straight line piece froB=1 to C=qg, higher than the equilibrium value,(T).
and a curved piece fro8=(g, to C=0. From the static point of vieW44,61], T. is the tempera-

The modification of these plots in a system driven byture below which the energy landscape becomes fractured
shearlike forces was studied at the mean-field level in Refdnto many metastable states. “Many” means that their num-
[18,21]. Numerically, the same behavior was found in aber MV(T,e) is such that the thermodynamic limit
sheared supercooled liquiB9]. Finally, Langer and Liu
studied a sheared foam, and studied the FDT by comparing im In M(T, e) (13
the fluctuations of the stress on the boundary and the corre- New N
sponding compression modul(&4].

At the theoretical level, it was shown in R¢s2] that the  giqts and is finite. The so-called complexityr “configu-
factor Tggr |“s mde_ed ebonafldetemQ,erature: it is con_1mon|y rational entropy’) 3(T,e)=In A(T,e) is henceextensiven
callgd the gffecuve temperature. A very appeal_mg con- 4 rangee e [€oo(T),€n(T)]. The effective temperaturBeer
nection of this factor with the ideas of Edwark®8], in the  jefined in the Sec. Il C from FDT violations can be com-

context of granular matter, and Stillinger and Wefs8] in 104 directly from the dynamical equations. A remarkable
the context of glass forming liquids, are currently being ex-raquit is that it is also given b62]

plored[56-58. We shall come back to this point below.
Finally we wish to recall a rigorous bound that controls 1 93(T.e)
the maximum deviation from the FDT that can be observed — =7 (14)
in an out of equilibrium system with Langevin dynamics Terr oe e=ey,
[59]. When a time-dependent force of perieds applied on

the system, the bound takes the form at T=0. [At finite temperature the free energy density re-

places the energy density in Eq$3) and(14).] This relation
ty+tr [ JC(t,S) ! o . Ve
f ds —TR(t,s) is very similar to the thermodynamic definition of tempera-
t Js ture, and to the definition of Edwards’ compactivity in
granular systems. We shall come back to these similarities in
twt 7 W S VI
< J\/f dsDA(t,s) || |, (@ =€ Vi . _ _
ty N The complexity is a useful quantity for understanding, for
example, the difference between the dynamics of ghe2
whereW s the total work done by the external fore@n the  andp=3 models. Fop=2, one hag,,=e,, and the com-
system, per periodV=[}""ds(v(s)-h(s)), Nis a system plexity is irrelevant,3=0. It follows that Tgee=0. This

w
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case falls in the “domain growth family” defined in Sec. 100
IIC. Instead, if p=3, e.q<e€;, 2>0 in the region
[€eq.€tn], and Teeeis finite. 10

If, instead of a quench from a high temperaturd a0,
the dynamics starts from one of the metastable states with
energy densitye,,<e<ey,, the system may escape this
state, but on a time scale which diverges withThe ergod-
icity is broken, and the dynamics is blocked. We could call 0.01
these metastable states the “jammed states’ of the system.
(They are known as Thouless-Anderson-Palmer states in the
spin glass literatur61].)

When a driving force is applied to the system, the dynam-
ics also depends on the initial state. The driven dynamics FIG. 1. The functionQ)(t)exp(—2t) in the three cases=0, h
following a quench under shearlike forces was investigated-2.5 andw=0.8 (glassy phase andh=2.5 andw=0.6 (liquid
in Refs.[18,21]. When starting from a low-lying state, and phas¢, from bottom to top. The points are the direct integration of
for a small enough driving forcehe system remains trapped Eqg. (17), while the full lines are fits to Eq920). Except at very
(jammed. Only by applying a large force will the system short times, the approximate forms in EqR0) yield the correct
escape the deep state and have a dynamics like the one féehavior.
lowing a quench 18]. Hence the system becomes able to
move only by raising its energy density: this is, in the glassyThe autocorrelation and response functions, together with the
context, the Reynolds dilatancy effddt,10]. energy density, read

The effect of these trapping states on the dynamics fol-
lowing a quench are beyond the mean-field approximation

1

0.1

Q(t) exp(-2t)

0.001
0

[Egs.(4)]. We propose to investigate this interesting aspect C(t,t,)= HtW)
by simulating, in Sec. IV C, the Ising version of the model, T Q()Q(ty) 2
keeping finite the numberN of interacting spins, so that
jammed states will be dynamically accessible by the system. +h2J'tdt’ thdt” cog wt')cog wt”) (")
0 0
Ill. DRIVEN SPHERICAL fhto—t! —t"
SHERRINGTON-KIRKPATRICK MODEL XQ(tﬂ)f(W—”
2 L
In this section we study analytically the driven dynamics (19)
of the p=2 case.
O(ty) [t—ty
A. Existence of a dynamic transition R(tty) = Q(t) f 2
Let us first study thep=2 case afT=0. The Langevin
equation(6) can be integrated out; this yields 2(t) 1dIN[Q(1)]
et t U="% =" @
_ ’ " a—ut’ ’
Su(t) _Q(t) 1+h#J0dt coqwt')e” # Q(t )},

(15 Equation (17) determines()(t) and, consequently, all dy-
namic quantities. Unfortunately, it cannot be completely
solved analytically except in some asymptotic limits.

Two special cases have been studied previously, namely,

where the function

Q(t)Eexp{ J’Otdt’z(t’) (16)

has been defined. The spherical constraint determing$
through the equation

Q(t)2=f(t)+h2ftdt’ftdt”f(t—%)
0 0

XQ(t")Q(t")cog wt’)coq wt”), 17
with f(t) given by

2
f(t)= J:Zd,up(ﬂ«)ez“t- (18

the zero field behavior of the model, and the case of a dc
field. In the former, as discussed in Sec. I, there is no finite
equilibration time belowl ;=1 and the system ages forever
[46,47. In the presence of a dc magnetic field of amplithde
(48], Eq. (17) yields Q(t)~exd\o(h)t], where \°(h)=(2
+h?)/\1+h?. The main effect of the field is to introduce a
new time scalet’(h)=[\°h)—2]"" in the problem. For
timest,,<t°(h) after the quench, aging is observed as in the
zero-field case, whereas at later tim@s>t?(h) the system
has reached its equilibrium state in a field: aging is inter-
rupted. The energy densitg(t) converges toe,.(w=0,)
=—(2+h?)/(2yJ1+h?).

At finite w, the numerical solution of Eq17) displayed
in Fig. 1 suggests the following asymptotic behavior:
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4 L | T R |
eZt

h<h(e), Q(O~c(bcos2ut+)+1] 10 £

(20)
h>h*(w), Q(t)~c’ exg\(w,h)t+acog2wt+ ¢)], S

wherec, ¢’, a, b<1, and ¢ are numerical constants, and
with A (w,h)>2. This means that if the amplitude of the
driving force is sufficiently small, the ac field does not intro- 0-&01 —= 0'1 — i T
duce a new time scale, and a full aging behavior is observed. w

For stronger amplitudes of the field, a time scale defined by

FIG. 2. The transition linén*(w), estimated by analytical, nu-
merical, and heuristic tools, together with the small frequency be-
t(w,h)=[N(w,h)—2]* (21)  haviorh*oc %

is generated, and the relaxation time becomes finite: aging is gB(t) — th'Z dup(p)

stopped by the driving force. Hence there is a critical fleld -2

separating these two different regimes. It is clear from Fig. 1 " . B 12
that the agreement between E¢R0) and the numerical so- Rd et (-1 'd €
lution is very good, after a short transient. In the following Ko (A(w,h)— p+iw)ktt  dik

we characterize these two phases, as well as the transition

between them. (24)

X

Since the functioB(t) is periodic with the angular velocity
2w, this corresponds to a development in powers o the

We have seen that, at a fixed pulsatonthere exists a small frequency limit, the equation can be closed by keeping
well-defined transition line where the relaxation time in an aconly the leading terms of the development, and this yields a
field diverges, allowing one to distinguish between “glassy” relation betweenX,w,h),
and “liquid” states. We anticipate the discussion of Sec.

B. Transition line in the plane (w,h)

Il A to emphasize that this transition is a nonequilibrium - 1 m
phase transition, which is hence of a different nature that the —= f dX————, (25
transition taking place at. in the absence of the driving h -1 (AM=2X)to

force.

The transition lineh*(w) may be understood and esti- from which we estimate the transition line where the time
mated from a simple physical argument. At=0, the dc  scalet,(w,h), given in Eq.(21), diverges. This is equivalent
field introduces a finite relaxation timi(h). The most naive to the condition\ (w,h*)=2. It is easily shown that, in the
requirement for the system to retain a finite relaxation timesmall frequency limit, the scaling(h*)= 7 is recovered, in
in an ac field of period- is given byt?(h)s 7. The transition  accordance with our heuristic argumégg. (22)]. In Fig. 2,
line is then estimated by the relation the analytical estimate for the transition lihé(w) is com-
pared with its direct numerical estimation, and with our heu-

2+h*? ristic argument. Also plotted is the small frequency behavior
O/ *) o .
b(h)=rewx w2 (22 of the critical field,h* o ®25
Moreover, Equatior{25) implies
A more refined computation can also be performed. Using h
the fact that, wherm>h*, Q(t) is given asymptotically by lim )\(w,h)=)\0<—>, (26)
Eq. (20) with A>2, allows us to neglect the terfiit) on the 0—0 V2
right hand side of Eq(17); thus
which means that, in the limitv—0, the field acts as a
2 t 12 constant field with an amplitude given by its root mean
Q(t)zzhzf 2d,up(,u)ez“t fodt’ cogwt")Q(t")e # | | square value, which is physically reasonable. Importantly

enough, this means that the effect of a dc field witktrictly
(23) zero, and the limit of an ac field with vanishing frequency,

are different. In the casp=2 this feature has no effect on

the value of the transition field*, since it vanishes in both
Inserting the formQ(t)=exgAt+B(t)], and formally inte- cases. However, whep=3 we shall find a nontrivial con-
grating by parts, yields sequence of this resulsee Sec. IV.
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FIG. 3. Correlation function of thge=2 model atT=0 for h
=0.5 andw=1, and waiting times,,=5, 10, and 20, from bottom FIG. 5. Time dependence of the energy density under an ac field
to top. The points fall on the discrete timesn, with nan integer. ~ with amplitudeh=0, 0.3, 0.6, and 1(from bottom to top, and
angular velocityw=1. The curve forh=1 approaches rapidly an

C. Below the transition h<h*(e): aging in an ac field asymptote, whereag(t) still evolves at large times for the other
cases.
Below the transition, Eq(20) shows that the energy den-
sity slowly converges toward its asymptotic valee(w,h ¢ yoyrot(t,)]. This implies that, apart from the oscil-

*y _ _t+—1 i 1m- A .
<h®)=—1 as a power lave(t) —e..~t * with a SUPerim- |4ion “the correlation scales dgt,, for t>t,; we have
posed oscillation at a frequeney/ 7. This asymptotic value hacked this point numerically.

is independent of. A slow (here a power lajvconvergence In tapping experiments, data are obtained for times of the
of one time quantities is typical of aging systefdd]. The o ¢—n 7, wherenis an integer. We have represented these
angular velocity 2 is expected since Ed6) remains un-  yaia py points in Fig. 3, and the experimental measurements
changed by the transformatiobs:t+ /w, s,——s,, and g, be very similar to the usual aging case.
z—2z. The constraing(t), and the energy density, are then  The response function is analyzed in Fig. 4, where the
mlw periodic. _ ) _ parametric plot of the integrated response against the corre-

That the TTI is also lost is demonstrated by looking atjation is built. As expected, there are strong violations of the
two-time quantities, typically correlation functions. The be- epT However, these violations are similar to those encoun-
havior of C(t,t,,) is represented in Fig. 3. This figure also tered in the relaxational case, in the sense that there are two
shows the interesting feature that the dynamics can be dgjistinct behaviors, depending on the time scale considered.
composed into two well-separated time scales. At short timgq; 5 time separatiob—t,,<t,,, the FDT is not satisfied,
separatiort—t,,, the time scale for the approach to the pla- anq o effective temperature can be defined. For the second
teau atC=qga (note thatgea=1 atT=0) does not depend {jme scalet=t,, and longer, on the contrary, all points fall
ont,, whereas the decay from the plateau toward zero arisggicely on a straight line, with a superimposed oscillation.
in a second time scale that clearly depends,pnDuring the - Bound(12) shows, however, that the deviation from the FDT
waiting-time-dependent decay, the curves have oscillationggp, only be significant at large times, when both
Quantitatively, the behavior of the correlation function is en-5c(t,t,)/dt, and R(t,t,), integrated over a period, are
tirely dominated at long times by the ter@(t,t,,)~f[(t small. This is confirmed by Fig. 4.

The inset of Fig. 4 showg(C) for the discrete times$

1.2 T T T T =nr7. If one uses this stroboscopic measurement, it remains
clear that the FDT modifications are well accounted for by
1r ] ansatz(10). Analytically, neglecting, as above, the second
08k i term in the correlation function, the effective temperature
3 1 defined through Eq9) scales aQ’EFFfvt&V’z—m. An infinite
+ 0.6 Fosr 1 effective temperature is also present in the relaxational dy-
VO A osf namics of this model, and is typical of domain growth mod-
i ] els.
0.2 L% 1 | With these simple considerations we have argued that the
T T effect of a small ac field does not change the aging behavior
0 L L L L of this model afT=0. This is to be confronted to the effect
0 0.2 0.4 C(%i ) 0.8 1 1.2 of non-Hamiltonian perturbations that change the aging scal-
) w

ing, as seen, for instance, in the correlation function that
FIG. 4. Parametric plot of the integrated response correlation opecomesC(t,t,)~ flexp(/t,— vt)] [18]. At nonzero tem-
the p=2 model atT=0 for h=0.5 andw=1, and waiting times  P€rature, shearlike forces introduce a finite relaxation time,

t,=5, 10, and 20. For the FDT to be satisfied, the points have to ligfter which the dynamics is stationary. We have not solved
on the vertical line. The inset represents the same data, but for timése p=2 model analytically at finite temperature in an ac
t=nr; the symbols are the same as in Fig. 3. field, but the numerical solution of the full equations sug-
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1.0 —— 1.0
0.6 0.6
z B
E % FIG. 6. Each panel shows the
8 0.2 8’ 0.2 autocorrelationC(t +t,,,t,) as a
function oft, for four values of the
waiting time t,,=3, 12, 49, and
198, atT=0.2. The angular veloc-
1 10 100 ; e
! 10 t ! 1000 t 1000 ity of the applied field iso=1. In
panels (a)—(c) the scale is loga-
L S — rithmic, the amplitudes of the ap-
T plied fields areh=0, 0.1, and 1,
. 06 = and the system is in its glassy
g § phase. In pangl) the scale is lin-
E 02 gt ear,h=2, and the slow dynamics
o 8 is suppressed.
c
0.2
0.1 1 10 100 1000 055 0 100
i t
gests that there is a finite region of the phase diagram IV. BEHAVIOR FOR p=3

(T,h,w) in which aging effects survive. This explicitly

: 2 Going beyond the solution of the unperturbed d&&H to
EZ?WS that the effects of shear and tapping are rather dlffersolve the set of coupled integro-differential equatidds

analytically is a very hard task. In order to illustrate the main
. _ properties of the solution, we solved E¢$) numerically, by

D. Above the transition: Driven steady state constructing a two-time solution step by step in time. We

Above the transition, the situation is simpler. After a time first demonstrate that in the cape=3, there also exists a
scalet,(w,h)=[\(w,h)—2]1, the slow dynamics is lost. transition line below which glassy properties of the undriven
Relation(25) implicitly determines\, which is an increasing model persist, and then study the FDT violations in both
function of the amplitudén of the driving force. In the sta- phases.
tionary state, the energy density oscillates with an angular
velocity 2w around its asymptotic value,(w,h>h*)=
—N\(w,h)/2. The behavior of the correlation is dominated by
the second term in E19). This shows that it decays toward Let us recall first the effect of a dc magnetic field of
zero on a time scale of ord&f w,h): there is no more aging. amplitudeh on the systeni63]. In contrast to the spherical

A. Evidence of a dynamical transition

1
’E\ 0.6
H
% 02 FIG. 7. Each panel shows the
autocorrelationC(t+t,, ,t,) as a
0.2 function oft, for four values of the
) ) ) . waiting time t,,=3, 12, 49, and
0.1 1 10 100 1000 0.1 1 10 100 1000 198 atT=0.2. The strength of the
t t applied field ish=1 and the fre-
1 1 guencies arev=0, 0.1, 1, and 10
from panels(a) to (d). The transi-
06 o6 tion in an ac field of amplitudé
g B : =1, from the liquid to the glassy
=z z phase, occurs at a frequency 0.1
£ 02 & 02 <we<1.
© 51
c d
0.2 0.2
0.1 1 10 100 1000 0.1 1 10 100 1000
t t
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tion. Note that the second decay is toward a vajge 0, as
opposed to the zero-field ca$63]. The frequency is in-
creased in Figs. (B)—7(d). At intermediate frequencjfig.

7(b)], aging is suppressed. Whan is further increased

LiQuip PHASE [Figs. 7c) and qd)] it is clear that the glassy phase is reen-

r_:/l W (w =0) trant.
------------------ It is of course very difficult to determine the transition
GrLASSY PHASE line h*(w) with accuracy by the numerical solution of t.he
limy oo dynamical equations. We are hence not able to draw a figure
—0

similar to Fig. 2 forp=3. In Fig. 8 we show a schematic

representation of this critical line with the feature, already

encountered fop=2, that the limitw— 0 is peculiar. From
FIG. 8. The full line is a schematic representation of the transi-the numerical solution ab>0, it seems that

tion line h*(w) for p=3. The angular velocity in the four panels in

Fig. 7 move from left to right along the horizontal dashed lisee lim h*(T,0)<h*(T,0=0). 27

the text for more details 0—0

w

. . . : This is represented in Fig. 8, and explains the reentrance of
_Shgrrmgton-Klrkpa_ltn(_:k model, the spin glass phz_glse may €Xthe glassy phase described in Fig. 7, when the frequency
ist in & dc magnetic field. There are both dynamic and Stat'(i:ncreases. Note, however, that we cannot numerically discard

transitions between the spin 'glass "’?r.‘d the paramagnet, possibility of a nonmonotonic, but smooth, behavior of
phases. AtT=0.2, the dynamic transition takes place atthe critical line atw<0.1

h*(w=0)=1.1[63].

As in the casgp=2, we begin our study by focusing on ] o
the behavior of the energy densiyt). This is displayed in B. Fluctuation-dissipation theorem
Fig. 5 at temperatur&=0.6 and angular velocity=1, for We now turn to a study of the FDT. In Fig. 9 we show the
different field amplitudes. The long time behavior efft) evolution of they vs C plots witht,,. In Fig. 9a), the sys-
indicates that the transition occurs for a fieldQl&*<1.0 at  tem is not in a glassy phase. Strong violations of the FDT are
this frequency. The asymptotic value of the energy densitybserved, but no effective temperature can be defined. The
increases slightly below the transition, and reaches a muckystem is athermal.
larger value, whem>h*, In Fig. 9b), conversely, the system is in its glassy phase.

In the following we concentrate on the temperatdre One then recovers g(C) curve that is very similar to the
=0.2=0.32T, i.e., well below the zero-field transition. We one in zero field. The first part is almost a straight line with
focus first on the dependence of the two-time autocorrelatioslope — 1/T, while the second decay follows a temperature
functions on the amplitude of the applied field. In Fi@6  — 1/Tger. As mentioned in Sec. Ill, the fact that, for small
the field ish=0, and we observe the usual agif]. It is  time scales, the FDT is nearly satisfied results directly from
then clear that aging is still present if the field is not toobound(12).
strong,h=0.1 and 1 in Figs. @) and Gc), whereas at a The nontrivial outcome of this study is the fact that a
stronger fieldh=2 in Fig. 6d), the correlation tends very well-defined Tggg, Which exists in the nondriven system,
rapidly to zero, with a superimposed oscillation. These obmay still be defined below the dynamical transition, in the
servations reinforce the evidence in favor of a dynamic tranpresence of the drive. A stroboscopic construction, like the
sition which, atT=0.2, occurs at a field strength<th*<2 one in Sec. Il C, will yield a perfect straight line that defines
for o=1. Tere Unambiguously.

We turn now to the question of identifying the critical line  The actual value of the effective temperature may depend
in the w direction. Figure 7 shows the autocorrelation func-on various parameters. We have searched for dependences
tion at fixed amplitude of the applied field and several valuen the frequency and amplitude of the ac field. Within the
of the angular velocity. In Fig. (8, the frequency is zero, range of parameters we could numerically explore, we have
and aging is observed with a two-step decay of the correlanot observed large dependences. Figure 10 displayg tree

1.25
1
FIG. 9. Thex(C) curves atT
.75/ =0.2 with an applied ac field of
= 05 | strengthh=1 and frequencies
=0.1 (liquid phasg¢ and w=10
0251 (glassy phase for different wait-
‘ ‘ ‘ ing timest,,=6, 12, 24, and 49.
0 025 05 075 1 ® 5 025 05 075 1
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1.25 1.25
1 1
0.75 | 075 |
x =
05 05
0.25 0.25 |
0 . . 0 . ’
0.25 0.5 0.75 1 0.25 05 0.75 1
C C

FIG. 10. Theyx(C) curves aff=0.2. In panela), the two curves correspond ko=0, andh=1, andw=1. In both cases the system is
in its glassy phase. In pané) the two curves correspond to=1 and 10, both with an amplitude=1. The lines are guides to the eye,
and they have the slope of the second part of the degay24 for all curves displayed.

C curves for two choices of field amplitudes, and for two  The influence of an ac magnetic field on this jammed
choices of angular velocity at fixed field amplitude, the de-behavior is evident in Fig. 1&ight). Both the energy and the

pendence is indeed weak. magnetization density are oscillating functions, and their be-
havior is intermittent. For some time windows, both quanti-
C. Beyond the mean field: effect of trapping states ties have an evolution which varies considerably from period

In this section we present results from a numerical simul© period. For other time windows, conversely, the different

lation of the Ising version of the-spin model in an ac field, cycles are very similar. This can be interpreted as being due
in the particular cas@=3. We focus on the time depen- (O the presence of the trappiigimmed states: the system
dence of the energy denSi%(t)=N_12i<,~<kJiijisjsk and usually evolves inside one of the trapping states, without
the magnetization densitn(t)=N"13,s(t). The sizesN escaping, and all th_e_perlods are equivalent. However, from
=50 and 150 have been used, together with a constant terime to time, the driving force is able to make the system
peratureT=0.01, in all simulations. The amplitude and the €scape the state, and the evolution is very erratic until an-
frequency of the magnetic field have been varied. other trapping state is found.

The interest of such an investigation is that the firte This is confirmed in Fig. 12, where the energy density is
behavior of the model is accessible. The system is hence abiepresented as a function pfor times of the formt=nr.
to escape and visit the trapping states described in Sec. Il ihhe long horizontal plateaus are the moments where the sys-
a finite time[ 18]. For this reason, the results presented in thigsem is jammed, whereas, between the plateaus, the energy
section cannot be obtained in a mean-field approach. density changes values very rapidly. As in Rd8], in Fig.

In the absence of magnetic field, the energy density rapi2 we show that the time evolution eft) is “self-similar,”
idly approaches its asymptotic value. At such a low temperain the sense that zooming on a time window makes smaller
ture, the system reaches a metastable stable, characterizedfdgteaus become visible while the overall evolution looks the
a nearly zero magnetization density, and cannot escapmme.
within the numerical time window. Figure Xleft) illustrates This intermittent behavior is clearly reminiscent of the
this “jammed” behavior. The value of the energy density behavior encountered in some granular experiments, where
depends on the initial conditions, which means that the systhe powder is very slowly perturbed, like the ones performed
tem may be blocked in different trapping states when it startby the Jussieu group64]. In particular, it would be very

from different initial conditions. interesting to perform a more careful analysis of the statisti-
08 T T T T T
! 0.8 T T T T
04 1 o4l I

T B e M

A
!

-0.4 .’"-..,nv ] 0.4 j
"-E".i n W 1

-0.8 1 1 I I I 1 1
0 10 20 30 40 50 0 10000 20000 30000 40000 50000

t t

FIG. 11. Evolution of the energgbottom curve and magnetizatiotop curve densities withoutleft) and with (right) magnetic field.
The parameters of the field ahe=2 andw=0.01. Note that the time range in the left figure is much shorter, sincedfotfrandm(t) are
constant for time$>50.
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T '04 T T T
T o5k s F i
fy: 1 " .- FIG. 12. Same parameters as
;st ; 1 =6k -z | in Fig. 11. Evolution of the energy
353;._3_ R N : A density with a magnetic field.

<D E o7kl TR - Only one point per period is rep-
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1 1 1 1

8 10 085 1.25 1.5 1.75 2
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cal properties 0é(t) such as, e.g., measuring the statistics ofapplied field, and a temperatufe< T, whereT, is the zero-
trapping time464]. We also note that this phenomenology is drive glass transition temperature, there are two regirigs:
very similar to the one of the so-called “trap mod€lB5], At small drive, the system exhibits slofiglassy”) dynam-
that was extended by Head to describe the phenomenologys. (I1) At large drive, there is no slow dynamics. There then
of granular material$36]. exists a well-defined critical drive separating these two re-

Finally, it is interesting to stress that even within one gimes. On the other hand, if we work at a fixed drive and
cycle of the field, the evolution is not regular at all. This Canmodify the angular velocity, the system undergoes a transi-
be seen nicely in Fig. 13, where the figift) is represented ion from a liquidlike phase at lowthough nonvanishing

as a function of the magnetizatian(t). This is the usual fequency to a glasslike phase at high frequency. This result
view of a hysteresis loop in ferromagnetic systems. It is cleajg displayed in Fig. 8.

that the shape of the loops is far from elliptic, and that the The phase diagram in Fig. 14 is the analog to tiel)

system evolves in steps, rather than continuously: this 'f)lane of the three-dimensional phase diagram proposed by

analogous to the Barkhausen ndiéé]. The overall shape of . . . . i
) ; Liu and Nagel[7]. We have then investigated its properties
a cycle depends drastically on whether the system is trappeﬁ detail, which to our knowledge has not been done so far in

or not. It is beyond the scope of this paper to study thes(f-f\h £ 2 timed dent driving f Cont ‘
loops in detail, but we emphasize that tHimean-field € case of a ime-cepenadent driving force. Lontrary 1o pre-

model could be an interesting starting point to study the//oUS Phenomenological modelings of the dynamics of
Barkhausen noise, in the spirit of RE66]. granular matter, assuming that the drileis related(in a
possibly nonlinear wayto the temperaturd of a glassy
model borrowed from statistical mechanics, here we propose
to study precisely the interplay betwe€&randI” as an inter-

Phase diagramOur findings concerning the behavior of mediate step from glassy to granular materials. The conclu-
glassy systems under a time-dependent driving force arsions we draw are then directly pertinent to gently driven
summarized in Figs. 8 and 14. For any fixed frequency of thgyranular materials or slow granular rheology.

V. SUMMARY AND LINK WITH GRANULAR MATTER

FIG. 13. Hysteresis loops.
Panels(a) and (b) correspond to
the period of rapid motion, while
panels(c) and (d) correspond to
interval when the system is
trapped.N=50, T=0.01, h=2,
andw=0.1.
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Drive Dynamical h(t)
T>r,ansition F(ttw)~ h(t,)
W.

) . (28)

in a given time scaleF and h are two model- system-

dependent scaling functions. More complicated scalings,
1 such as a sum of different terms like E®8), implying
several different time scales in the problem, are also pos-
sible.

Two-time quantities such as the density-density correla-
rr%ion function were numerically studied, clearly demonstrat-
The vertical axis represents the typical amplitude of the drivingIrlg that the TTI 'S, IOS[27’31'2§: the Tﬁms mlgdelleXh'bgsl
force: its precise definition depends on the specific experiment corf® In@)/In(t,) behavior 27,28, whereas the parking lot mode

sidered;T, is the zero-drive glass transition temperature. shows at/t,, aging behaviof31]. . .
An experimental determination of the scaling of two-time

_ ) _quantities will be useful to discriminate among the different
We emphasize once again that the model we have studigflodels proposed to describe granular matter. This was al-
is not intended to describe granular matter in full micro- ready proposed in Ref§27,28,3], and amounts to an ex-
scopic detail, but rather to act as a source of inspiration foperimental determination of the functidm(t) involved in
the intel’pl’etation of numerical and eXperimental results. |Eq (28) Such experimenta| determinations in g|assy sys-
may also motivate new experimental measurements. Howems are by now numerous. They have emphasized, on the
ever, let us briefly summarize its dynamic behavior in theone hand, the universality of the aging phenomena in many
context of existing data for granular matter. microscopically different systenid42—16; however, on the
One-time quantitiesin phase(l), one-time quantitieéwe  other hand, they have also revealed subtle differences be-
have focused on the energy dengitypically decay toward tween then{11,13.
their asymptotic values as power laws. It is experimentally Fluctuation-dissipation theorem violation®ur study has
established that the densipft) in a gently driven granular shown that modifications of the FDT, rather similar to those
system exhibits a very slow relaxati¢h]. The parallel can observed forging glassy systems, also arise in glassy mod-
be drawn with the energy densig(t) [or more precisely els driven by time-dependent forces. The parallel with granu-
with —1/e(t) ] in glassy models. The seminal experiments atlar materials suggests that this may also happen in driven
Chicago exhibited a logarithmic relaxation of the dengfly ~ powders.
as found in all subsequent workd,26—32,34-3p (Note The parametric plot we have built clearly shows that
that Ref.[2] explicitly excluded a power law behavipr. driven glassy systems have two distinct time scales, which
However, the recent experiment of Nicokatsal. [3] showed  we interpret as in Ref$8,9]. A fast one, which is essentially
that the logarithmic law isiot a universal behavior, and that independent of the waiting time, represents the individual
the time dependence may depend on the way the system fisotion of grains: no effective temperature, in the sense of
perturbed. From a theoretical point of view, one could prefelEq. (9), can be defined here. Since the model we have used is
a power law decay for any one-time quantity, since it doestself thermal(it uses a Langevin equation with a thermal
not involve an intrinsic time scale, whereas the logarithmicnoise, the fast motion has a reminiscence of the temperature
law 1/In(t/ty) explicitly introduces a time scalg. In this  of the bath(that may be zeno In a more realistic model of
context, it is interesting to note that Barrat and Lorg28], granular matter, it is likely that the fast motions will be com-
in their study of the Tetris model, showed that the fitting pletely athermal. Conversely, the long time scale, growing
parameterty actually depends on the considered time win-with the waiting time and giving rise to thet,, relaxation,
dow; qualitativelytqyoct,, . Head[36] already emphasized the represents large structural rearrangements in the powder. Our
role of the time window on the fitting parameters, in particu-results indicate that these slow degrees of freedom are ther-
lar on the asymptotic value of the density. malized at a well-defined effective temperature. We are con-
In the context of glassy systems, it is a well-known fea-fident that this result also holds in realistic models of granu-
ture that the interpretation of data over a finite time windowlar matter.
is always delicate. A typical example is provided by the case Again, numerical and experimental work could be used to
of dipolar glasses, where the dielectric constant for samplesheck these predictions in granular materials. We have
prepared with different cooling rates seems to approach difshown that the two models studied here have different FDT
ferent asymptotic valugdl5]. violations: thep=2 case has an infinite effective tempera-
Two-time quantitiesIn phase(ll), the model we have ture, whereas thp=3 models have a single finite effective
studied also exhibits aging. Fpr=2, we find at/t,, scaling temperature. Other glassy modéfer instance mean-field
(in stroboscopic timeof the autocorrelation function, while spin glasseshave been shown to have a hierarchy of effec-
for p=3 a much more careful numerical analysis is neededive temperatures when they are undriven, and shall probably
to determine this law. Other glassy models perturbed with akeep this behavior under driving forcg87]. We conjecture
forces may lead to other aging scalings. Generally speakinghat granular materials fall in the=3 category, by analogy
theoretical argumentgl1] indicate that one can expect the with structural glasses. This prediction has to be tested ex-
following behavior for any two-time functiof (t,t,,), perimentally and numerically. It is not unlikely that different

Tc >Temperature

FIG. 14. Temperature-drive phase diagram of a glassy syste
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microscopic models lead to different FDT violations; such aln particular, no effective FDT temperature can be defined:

numerical determination could once again discriminate bethe system is completely athermal. The very existence of an

tween them. effective temperature relies indeed on the existence of two
To study FDT violations during the compaction experi- well-separated time scales, allowing the slow degrees of

ment, one has to compute, separately, the correlation fundteedom to thermalize and the susceptibility and correlation

tion between two observables and its conjugated respongi@rametric curves of Fig.(8) are not very useful to describe

function. In experiments for instance, the Nyquist relation isthis non-equilibrium situation.

checked through dielectric measuremdri4,68. In granu-

lar materials, a natural choice is to check the Einstein rela- VI. CONCLUSION: TOWARD A THERMODYNAMICAL

tion between self-diffusion and the mobility of the grains. DESCRIPTION OF SLOW GRANULAR RHEOLOGY?

The results obtained in Reff69,7( are then very encour- he i . ¢ olati . ¢ -
aging, although the driving field is not time dependent in_ | € interpretation of FDT violations in terms of an effec-

these studies. Nicodemi instead studied the fluctuationiVe emperaturdlees was developed in Ref52]. Having a
ell-defined concept of temperature is a crucial first step in a

dissipation relation between height-height displacement, an\% ) o ;
its conjugated integrated response to small shaking ampli'€rmodynamical description of granular materfa8]. It is

tude perturbations in the Tetris modéll]. In the low den- then important to di_scuss the po;sibility of a Iink_with pre-
sity regime (fluidelike), after a short transient, these two vious thermodynamlcal concepts in the granular_llterature.
guantities are related by the usual FDT. In the high density The notion of a gra_nular temperature” was introduced
regime, the relation between these quantities shows mu extend thermodyna_mlc_s to strongly pe_:rturbed powiELs
stronger deviations from the FDT than the model we studied” @nalogy with the kinetic gas theory, it was assumed that
here. This difference may be due to the kind of perturbatioﬁhe d'StF'b““_O_” of the_ grain velocity |52 Maawellian. Via
used by Nicodemi. For a thermal system, the procedure iff® eduipartition relation, one ge¥s<(v®). We have been
Ref.[71] is indeed similar to measuring the energy respons&oncerned with a weakly perturbed regime, where the dy-

to a temperature change: The resulting FDT properties arB@Mmics is slow. This hydrodynamic definition is not sup-
also found to be of an unusual tyf2] in this case. How- posed to be relevant in this case. This is also well known in

ever, the notion of an effective temperat(g] implies that the field of glasses, where nontrivial effective temperatures

the FDT relations of all observables evolving on the samé€ known to exist while the kinetic energy is an observable

time scale should be identical. As suggested in H&f,69, that very rapidly equilibrates with its environment, leading to

an interesting open question is the following: does a mea2 kinetic temperature that coincides with the temperature of

surement in the Tetris model done with a more standarélhe bat'h. Very recentl[/74], an attempt to ext'end the hydro-
infinitesimal perturbation lead to the same FDT relation?dynamic theory to a regime where the grains acé fluid-

This point deserves a more detailed investigation in this anéF€d Was proposed, also using the concept of kinetic granular
other glassy models. temperature. It would then be very interesting to try to un-

The dynamic transition, and the regime (IWVe have derstand the two concepts in a unified way.
found a well-defined transition in the phase diagram of Fig. More related to ours is the approach of Mehta and co-
14. This is in complete agreement with experimental andV/Orkers(8], discussed in Sec. I. This phenomenological two-
numerical observations of the existence of a critical value oft€P: wo-temperature model finds a nice justification within
the drivel'™*, below which glassy effects may be observed.the scenario emerging from our results. This model was in

The existence of this dynamical transition provides a veryfact inspired by the illuminating work initiated in the late

natural context for the interpretation of the numerous non+980s by Edwards and his collaboratf8]. The postulated

equilibrium effects encountered in granular matter. IndeedtN€rmodynamic relations in analogy with the usual “ther-

the transition line in the Fig. 14 links the standard glasgn@l” thermodynamics, where the volunveplays the role of
transition arising af =T,, and['=0 in the glassy model to the internal energyJ. In this approach, the entropy is the

the dynamical transition arising &=0 and'=T'* in the logarithm of the number of configurations with volurive
driven dynamics of athermal systems. In our opinion, this € so-called compactivit is the analog of the tempera-

result gives a nice theoretical support to the analogy betweele: and it is defined 38|
glasses and granular materials, making a deep connection
between the two situations.
We wish to emphasize that it was not evidargriori that
the transition could survive a finite time-dependent driving
force. This is one of the main results of this paper, and it hastill by analogy with the usual definitio 1= 4S/gU. The
to be compared to the very different effect of shearlikeconnection between the compactivifyand the FDT tem-
forces. Indeed, an infinitesimal shearlike perturbation isperatureTgge discussed in this paper has already been ex-
enough to introduce a finite time scale in this model, andplored[10,57,58,62,7]L Crucially for our study,Edwards’
aging is hence interruptdd 8,21]. definition of the compactivity coincides with the (asymptotic)
The liquid regime(ll) is less interesting in the present FDT effective temperaturdefined in Eq.(14). This result
context, since no slow dynamics is present. Let us stress thaolds for mean-field models like the one discussed [&2§
the system is still strongly driven, and hence no “equilib- as well as in the lattice gas model studied in RB¥)]. How-
rium” state, in the sense of statistical mechanics, is reachecver, these studies have been done without an external forc-

n

d
Vv’

(29

X|
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ing. It would be very interesting to extend the numericalglassy systems provides a theoretical framework to under-

analysis of Ref[57] to the same model now driven by an ac stand the slow granular rheology. The existence of a dynami-

force. cal transition well justifies the use of “modified glassy mod-
We have obtained here that the existence of an effectivels” to describe granular materials. The existence of an

temperature for the slow decay resists a finite ac force. Thisffective temperature for the slow degrees of freedom pro-

supports the conjecture that definitiofig) and(29) may be  vides, in particular, a nice theoretical basis to previous “ther-

of fundamental interest for the study of glassy and granulamal” models for granular matter, and to the seminal ap-

materials. Computing them in realistic models is then a chalproach of Edwards.

lenge for future researdb7,58,62,7% In this respect, very

recent_works[76]_stl_1dy|ng spin models on random graphs ACKNOWLEDGMENTS

may give some insights into the role played by metastable

states, which can have an important influence on the dynam- We wish to thank J.-L. Barrat, E. Kolb, J. Kurchan, F.

ics, as we showed in Sec. IVC. Restagno, M. Sellitto, L. Vanel, and J. Wittmer for very
In conclusion, we have found that the study of driven-useful discussions.
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