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Glassy systems under time-dependent driving forces: Application to slow granular rheology

L. Berthier,1 L. F. Cugliandolo,2 and J. L. Iguain3,*
1Laboratoire de Physique, E´cole Normale Supe´rieure de Lyon, 46 Alle´e d’Italie, F-69007 Lyon, France

and Département de Physique des Mate´riaux, UCB Lyon 1, 69622 Villeurbanne Cedex, France
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We study the dynamics of a glassy model with infinite range interactions externally driven by an oscillatory
force. We find a well-defined transition in the~temperature-amplitude-frequency! phase diagram between~i! a
‘‘glassy’’ state characterized by the slow relaxation of one-time quantities, aging in two-time quantities and a
modification of the equilibrium fluctuation-dissipation relation; and~ii ! a ‘‘liquid’’ state with a finite relaxation
time. In the glassy phase, the degrees of freedom governing the slow relaxation are thermalized to an effective
temperature. Using Monte Carlo simulations, we investigate the effect of trapping regions in phase space on
the driven dynamics. We find that it alternates between periods of rapid motion and periods of trapping. These
results confirm the strong analogies between the slow granular rheology and the dynamics of glasses. They also
provide a theoretical underpinning to earlier attempts to present a thermodynamic description of moderately
driven granular materials.
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I. INTRODUCTION

In recent years, granular matter has received growing
tention from the physics community@1#. The study of pow-
ders is relevant not only because granular materials h
many industrial applications but also because it raises m
fundamental questions of physical interest.

We call granular matter all many-body systems con
tuted by grains of macroscopic size. The grains interact
repulsive dissipative forces due to inelastic collisions a
static friction. The thermal energy scale is totally negligib
with respect to the typical gravitational energy. In the a
sence of external perturbations, each metastable config
tion has an infinite lifetime, and thermal averaging is me
ingless. The static properties of such systems are hence
interesting, the sandpile problem being the paradigm@1#.

Powders flow only when energy is supplied externa
This can be done by applying a shear or a vibration. T
dynamics of granular matter presents a very rich phen
enology that depends not only on the intensity of the dri
generically calledG, but also on the way the granular syste
is driven @1#. A weak driving force can be provided by ap
plying ‘‘taps’’ to the systems, as has been done in the p
neering experiments of the Chicago group@2#, where the
parameterG is the reduced acceleration of the taps. Recen
Nicolas et al. investigated the dynamics of a powder by
nusoidally shearing it in a weak manner@3#; G here is the
maximal amplitude of the strain. Experiments reveal that
time evolution, in the gently driven situation, is characteriz
by an extremely slow dynamics@2–4#. In the tapping experi-
ments for instance, the density still evolves after 105 taps@2#.
When the energy injection is much stronger, the granu
matter eventually becomes fluid; it behaves essentially lik

*Present address: LPTHE, 4 Place Jussieu, F-75252 Paris C
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dissipative gas, and is described by a hydrodynamic the
that takes into account energy dissipation through the co
sions between the grains@1,5#. In this work we shall focus on
the gently driven regime, and we shall not address
strongly perturbed situation.

This phenomenology is clearly reminiscent of the beh
ior of glass forming systems, for which the control parame
is the temperatureT ~or the densityr) @6–10#. At high T
~say!, the samples are in the liquid or gaseous phases. W
T decreases, their dynamics becomes exceedingly slow,
may even appear to stop completely during the experime
time window. However, at temperatures above but close
the glass transition, the relaxation reaches a stationary
gime characterized by the decay of all correlations in t
steps, the second decay being related to the structural re
ation. At temperatures below the glass transition tempe
ture, the structural relaxation timet r depends on the time
spent in the glassy phase~the ‘‘waiting time’’ tw , or ‘‘age’’!,
and typically t r}tw @11#. A stationary regime cannot b
reached experimentally. This is the aging effect which h
been observed in a wide spectrum of glassy systems suc
plastics @12#, spin glasses@13#, glycerol @14#, dielectric
glasses@15#, complex fluids@16#, phase separating system
@17#, etc.

Recently, the similitude in the dynamics of granular m
ter under vibration and glass forming materials was ration
ized by Liu and Nagel@7#. These authors proposed a pha
diagram that unifies the physics of glassy systems and gr
lar materials. In its simplest version, the diagram has th
axes (T, r, G). The (T, r) plane describes the physics o
glasses, while the (r, G) plane describes the one of atherm
driven systems, like powders or foams. In the low-T, high-r,
small-G region, the system is generically jammed or prese
glassy features. In this work, we focus on the (G,T) plane of
this phase diagram. The drive axisG can represent two type
of forces: ~1! ‘‘shearlike’’ forces that do not derive

dex
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from a potential and hence do work on the sample@18#; and
~2! ‘‘tappinglike’’ forces that do derive from a potential bu
work on the samples when they depend on time. B
modify the dynamic behavior, and the goal is to ident
how, and to what extent, in a general manner. One poss
scenario is that the age of the driven system stabilizes
power dependent level, typicallyt r}G21. In rheological lan-
guage, this is a shear-thinning behavior. Some examples
given by domain growth under flow@19# or by the nonlinear
rheology of complex fluids@20#, and it has been captured b
a number of models@21–23#. In particular, a~shear, tem-
perature! phase diagram for glassy systems was derived
Ref. @21#. Another scenario, realized in the present paper
that aging is not stopped, at least in a well-delimitated reg
of the phase diagram.

The behavior of moderately driven granular matter h
received a lot of experimental@2–4,24,25#, numerical@9,26–
29# and theoretical@8,10,30–38# attention. All these studies
demonstrated the glassy nature of granular compaction
low a critical amplitude of the drive,G!. This was first re-
vealed by the very slow relaxation of the density, b
memory experiments@24# and simulations@28,31# inspired
by earlier spin glass studies@11,13# also gave support to thi
conclusion.

The relation between granular matter and glassy syst
is widely assumed. Indeed, many of the models propose
study granular compaction are directly adapted from gla
models @8,26–29,36–38#. Usually, the driveG in granular
matter is related to the temperatureT in glasses. However
the assumed relationshipT5T(G) between the drive and th
temperature is a highly nontrivial statement and there is
our knowledge, no microscopic approach that justifies t
We do not make such an assumption here.In this respect,
Mehta et al. @8# built a phenomenological two-temperatu
stochastic model based on the observation that slow gran
compaction is basically a two-step process: in this mode
short-time process stands for fast independent-particle re
ation, while a slow one stands for cooperative rearran
ments. The recent experiment of Nicolaset al. @3# clearly
proved the existence of these two~uncorrelated! processes. A
two-step process, each step thermalized with its own t
perature, is precisely the output of previous studies of
constantly driven dynamics of glassy systems in a ther
bath @18,21#, confirmed by the numerical simulation of
sheared supercooled liquid@39#.

In this paper we study the dynamics of a glassy sys
permanently perturbed by a time-dependent Hamilton
force @40–42#. Our aim is to identify which properties cor
respond to those observed experimentally in granular
tems, and whether an effective temperature for the slow
grees of freedom is generated in this weakly atherm
system. In some sense, our approach is ‘‘orthogonal’’ to p
vious ones. We do not propose a new model for the s
granular rheology, but rather ask the following simpler qu
tion: What is the behavior of a glassy system subjected
periodic driving forces?To answer this question, the (T, G,
v) phase diagram is explored. This is done by studying
dynamics of the, by now standard, mean-field glass mo
the p-spin glass model@11,43,44#, under a time-dependen
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driving force.~Despite its name, that follows from historica
reasons, this model represents a structural glass and n
spin glass.! We then discuss how our results have to be
terpreted in the context of granular materials.

The paper is organized as follows. In Sec. II, we recall
definition and main properties of thep-spin glass model. Its
behavior under an oscillatory drive, for the choice of para
etersp52 and p>3, is examined in Secs. III and IV, re
spectively, in two ways: analytical and numerical solutio
of the spherical model, and Monte Carlo simulations of t
Ising model. We discuss our results in the context of sl
granular rheology in Sec. V. Our conclusions close the pa
in Sec. VI.

II. DEFINITION AND ZERO-DRIVE BEHAVIOR
OF THE MODEL

The sphericalp-spin glass, whenp52, is simply the
spherical version of the Sherrington-Kirkpatrick spin gla
and was introduced by Kosterlitzet al. @45# as an exactly
solvable model. It is in fact equivalent to theO(n), n→`,
model for ferromagnetic domain growth in three dimensio
Its statics@45# and its relaxational dynamics have been e
tensively studied@46–48#. The p>3 spherical models are
instead simplified models for supercooled liquids a
glasses, in the sense that they give a theoretical framewo
understand both the statics@11,43,49# and the nonequilib-
rium dynamics@11,50# of glass forming systems. We stud
these two cases as generic glassy models, taking advan
of the fact that exact equations for their driven dynamics c
be derived.

A. Model

The p-spin glass model in its spherical@44# and Ising
@43,51# versions is defined by the Hamiltonian

HJ@s#5 (
i 1, i 2, . . . , i p

Ji 1i 2 . . . i p
si 1

si 2
. . . si p

, ~1!

where the couplingsJi 1i 2 . . . i p
are random Gaussian variable

with zero mean and variance(Ji 1i 2 . . . i p
)25p!/(2Np21).

The spins$si ,i 51, . . . ,N% may satisfy a global spherica
constraint( isi

2(t)5N, or be Ising variablessi561. In the
spherical version, the driven dynamics is given by t
Langevin equation

]si~ t !

]t
52

dH

dsi~ t !
2z~ t !si~ t !1 f i

TAPPING~ t !1h i~ t !, ~2!

where the parameterz(t) ensures the spherical constrain
andh i(t) is the thermal noise, taken from a Gaussian dis
bution with zero mean and variance 2kBT. @In what follows
we use units such that the Boltzmann constantkB is 1.# The
thermal bath temperatureT can possibly be zero. In the Isin
version one can still write down a continuous Langev
equation by using soft spins and taking the Ising limit at t
end of the calculations. The spherical version is simpler
2-2
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GLASSY SYSTEMS UNDER TIME-DEPENDENT DRIVING . . . PHYSICAL REVIEW E63 051302
treat analytically, while the Ising version is much simpler
deal with using Monte Carlo simulations, since the spins
bimodal variables.

In order to mimic tapping experiments, a periodic tim
dependent Hamiltonian forcef i

TAPPING(t) has to be added to
the right hand side of the Langevin equation~2!. The sim-
plest periodic time dependence one can think of is a co
form of periodt[2p/v. Thus we are led to add a magnet
field in Hamiltonian~1!:

HJ@s#→HJ@s#1cos~vt !(
i 51

N

hisi~ t !. ~3!

In the most realistic numerical experiments, the tapping
modeled by a two-step dilation-relaxation process@9#, while,
in more schematic models, the driving force is not explici
time dependent@26,28,29,31#. Two types of spatial depen
dence of the field will be considered below: constant,hi

5h, for all sitesi, and random,hihj5h2d i j . There are, how-
ever, no physical differences between the two situatio
since a spatially constant field is as decorrelated from
ground states of the HamiltonianHJ@s# as a random one.

B. Dynamical equations

The dynamics of the spherical version of the model
better analyzed in terms of the autocorrelation funct
C(t,t8)[( i^si(t)si(t8)&/N and the linear response functio
R(t,t8)[( i^si(t)h i(t8)/(2TN) since, in the thermodynami
limit N→`, C andR verify closed Schwinger-Dyson equa
tions which read, fort.t8 @50#,

]C~ t,t8!

]t
52z~ t !C~ t,t8!

1
p~p21!

2 E
0

t

dt9Cp22~ t,t9!R~ t,t9!C~ t9,t8!

1
p

2E0

t8
dt9Cp21~ t,t9!R~ t8,t9!

1h2 cos~vt !E
0

t8
dt9 cos~vt9!R~ t8,t9!,

~4!
]R~ t,t8!

]t
52z~ t !R~ t,t8!

1
p~p21!

2 E
t8

t

dt9Cp22~ t,t9!R~ t,t9!R~ t9,t8!,

z~ t !5T1
p2

2 E
0

t

dt9Cp21~ t,t9!R~ t,t9!

1h2 cos~vt !E
0

t

dt9 cos~vt9!R~ t,t9!.

These integrodifferential equations are complemented by
equal-time conditionsC(t,t)51 andR(t1,t)51, the sym-
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metry of the correlation,C(t,t8)5C(t8,t), and the causality
R(t8,t)50. In deriving these equations, a random init
condition at timet50 has been used, which can be inte
preted as an equilibrium configuration at infinite tempe
ture. An infinitely fast quench toward the final temperatureT
is performed att50, and the evolution continues at subs
quent times in isothermal conditions. The energy dens
e(t)[N21^HJ@s#& is related to the constraintz(t) through

e~ t !5
1

p
@T2z~ t !#. ~5!

In Eqs. ~4!, the oscillatory field has been chosen to be co
stant in space.

In the p52 case, the dynamics simplifies considerab
since it can be solved directly from the Langevin equat
~2!. Indeed, this set ofN differential equations is diagonal
ized by using the basis of eigenvectors of the symme
matrix Ji j . Denotingm the eigenvector associated with th
eigenvaluem, andsm[m•s andhm[m•h the projections of
the spin and field onto the eigenvectors, one obtains

]sm~ t !

]t
5@m2z~ t !#sm~ t !1hm cos~vt !1hm~ t !. ~6!

Here we have considered, for convenience, a spatially un
related random field. The autocorrelation and response fu
tions become

C~ t,t8!5E
22

2

dmr~m!^sm~ t !sm~ t8!&,

R~ t,t8!5
1

2TE22

2

dmr~m!^sm~ t !hm~ t8!&, ~7!

where r(m)[A42m2/2p for mP@22,2#, and zero other-
wise, is the density of eigenvalues of the random matrixJi j .
The spherical condition readsC(t,t)51, and, after projec-
tion, the amplitude of the fieldhm is random with zero mean
and variancehmhm85h2dmm8 .

C. Fluctuation-dissipation relation and effective temperatures

We shall be interested in the fluctuation-dissipation th
rem ~FDT! and its possible modifications. For driven sy
tems, we do not expect this relation to be satisfied. In eq
librium, any correlation functionC(t,t8)5^O(t)O(t8)& @we
assume, without loss of generality, that^O(t)&50#, and its
associated linear responseR(t,t8)5d^O(t)&/d f (t8)u f 50,
where the perturbationf modifies the Hamiltonian of the sys
tem according toH→H2 f O, satisfy the FDT:

R~ t,t8!5
1

T

]C~ t,t8!

]t8
, t>t8. ~8!

For nonequilibrium systems, a possible extension is@50,52#
2-3
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R~ t,t8!5
1

TEFF~ t,t8!

]C~ t,t8!

]t8
, t>t8. ~9!

Naively, this equation is simply a definition of the two-tim
functionTEFF(t,t8). This extension becomes nontrivial whe
one realizes that, in the long waiting-time limit of many sol
able models, this function only depends on times via
correlation function itself:

TEFF~ t,t8!5TEFF@C~ t,t8!#. ~10!

By extension, it has been proposed that this exact resul
solvable, mean-field-like models, will also apply to more
alistic models with, e.g., finite range interactions. Grap
cally, a convenient way of checking this ansatz is to rep
sent the integrated response functionx(t,t8)
[* t8

t dt9R(t,t9) as a function ofC(t,t8) at fixed t8, and
parametrized by the time differencet2t8 @53#. Equation~10!
implies that a master curve~i.e., independent oft8) x(C) is
asymptotically reached.

In the aging case, three families of models have b
found @11#: ~1! glassy models, for which thex(C) curve is a
broken straight line with a first piece, fromC51 to C
5qEA[ limt→`limt8→`C(t,t8), of slope21/T and a second
piece, fromC5qEA to C50, of slope21/TEFF, TEFF being
finite; ~2! ‘‘domain growth models,’’ for which thex(C)
curve is still a broken straight line with the second pie
having TEFF5`; and ~3! spin-glass models, for which th
x(C) curve has a straight line piece fromC51 to C5qEA
and a curved piece fromC5qEA to C50.

The modification of these plots in a system driven
shearlike forces was studied at the mean-field level in R
@18,21#. Numerically, the same behavior was found in
sheared supercooled liquid@39#. Finally, Langer and Liu
studied a sheared foam, and studied the FDT by compa
the fluctuations of the stress on the boundary and the co
sponding compression modulus@54#.

At the theoretical level, it was shown in Ref.@52# that the
factorTEFF is indeed abonafidetemperature: it is commonly
called the ‘‘effective temperature.’’ A very appealing co
nection of this factor with the ideas of Edwards@38#, in the
context of granular matter, and Stillinger and Weber@55# in
the context of glass forming liquids, are currently being e
plored @56–58#. We shall come back to this point below.

Finally we wish to recall a rigorous bound that contro
the maximum deviation from the FDT that can be observ
in an out of equilibrium system with Langevin dynami
@59#. When a time-dependent force of periodt is applied on
the system, the bound takes the form

E
tw

tw1t

dsS ]C~ t,s!

]s
2TR~ t,s! D

<AS NE
tw

tw1t

dsD2~ t,s! D S W

N D , ~11!

whereW is the total work done by the external forceh on the
system, per period,W[* t

t1tdŝ v(s)•h(s)&, N is a system
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dependent numerical factor, andD(t,s) is a two-time corre-
lation that in most cases of interest is again bounded b
numerical constant. In particular, for the model we treat
this paper, bothN andD2(t,s) are equal to 1. Hence, for thi
model, we have

E
tw

tw1t

dsS ]C~ t,s!

]s
2TR~ t,s! D<AtS W

N D . ~12!

D. Zero-drive dynamics: jammed states
and Reynolds dilatancy

In the absence of a driving force, the model has a dyna
cal transition at a (p-dependent! critical temperatureTc . For
instance,Tc51 for p52 andTc.0.6123 forp53. Above
Tc , the equilibration time is finite, and the system reach
equilibrium. In this case, both time-translation invarian
~TTI! and the FDT are satisfied, and Eqs.~4! reduce to a
mode-coupling equation for the so-calledFp21 model
@11,43,60#. The relaxation time diverges atTc , and, below
Tc , the system does not equilibrate with its environment
quench from the high temperature phase toward the low t
perature phase is followed by the aging dynamics descri
in Sec. I: the relaxation time increases withtw , which means
that the TTI is lost. The FDT is modified in the way de
scribed in Sec. II C. One-time quantities have a slow rel
ation, typically power laws, and, for instance, the ener
density converges to a valuee(t→`)5eth(T) which is
higher than the equilibrium valueeeq(T).

From the static point of view@44,61#, Tc is the tempera-
ture below which the energy landscape becomes fractu
into many metastable states. ‘‘Many’’ means that their nu
ber N(T,e) is such that the thermodynamic limit

lim
N→`

ln N~T,e!

N
~13!

exists and is finite. The so-called complexity~or ‘‘configu-
rational entropy’’! S(T,e)[ ln N(T,e) is henceextensivein
a rangeeP@eeq(T),eth(T)#. The effective temperatureTEFF
defined in the Sec. II C from FDT violations can be com
puted directly from the dynamical equations. A remarka
result is that it is also given by@62#

1

TEFF
5

]S~T,e!

]e U
e5eth

~14!

at T50. @At finite temperature the free energy density r
places the energy density in Eqs.~13! and~14!.# This relation
is very similar to the thermodynamic definition of temper
ture, and to the definition of Edwards’ compactivity
granular systems. We shall come back to these similaritie
Sec. VI.

The complexity is a useful quantity for understanding, f
example, the difference between the dynamics of thep52
andp>3 models. Forp52, one haseeq5eth , and the com-
plexity is irrelevant,S50. It follows that TEFF5`. This
2-4
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case falls in the ‘‘domain growth family’’ defined in Sec
II C. Instead, if p>3, eeq,eth , S.0 in the region
@eeq ,eth#, andTEFF is finite.

If, instead of a quench from a high temperature att50,
the dynamics starts from one of the metastable states
energy densityeeq,e,eth , the system may escape th
state, but on a time scale which diverges withN. The ergod-
icity is broken, and the dynamics is blocked. We could c
these metastable states the ‘‘jammed states’ of the sys
~They are known as Thouless-Anderson-Palmer states in
spin glass literature@61#.!

When a driving force is applied to the system, the dyna
ics also depends on the initial state. The driven dynam
following a quench under shearlike forces was investiga
in Refs. @18,21#. When starting from a low-lying state, an
for a small enough driving force, the system remains trappe
~jammed!. Only by applying a large force will the system
escape the deep state and have a dynamics like the one
lowing a quench@18#. Hence the system becomes able
move only by raising its energy density: this is, in the glas
context, the Reynolds dilatancy effect@1,10#.

The effect of these trapping states on the dynamics
lowing a quench are beyond the mean-field approxima
@Eqs. ~4!#. We propose to investigate this interesting asp
by simulating, in Sec. IV C, the Ising version of the mod
keeping finite the numberN of interacting spins, so tha
jammed states will be dynamically accessible by the syst

III. DRIVEN SPHERICAL
SHERRINGTON-KIRKPATRICK MODEL

In this section we study analytically the driven dynam
of the p52 case.

A. Existence of a dynamic transition

Let us first study thep52 case atT50. The Langevin
equation~6! can be integrated out; this yields

sm~ t !5
emt

V~ t ! F11hmE
0

t

dt8 cos~vt8!e2mt8V~ t8!G ,
~15!

where the function

V~ t ![expF E
0

t

dt8z~ t8!G ~16!

has been defined. The spherical constraint determinesV(t)
through the equation

V~ t !25 f ~ t !1h2E
0

t

dt8E
0

t

dt9 f S t2
t81t9

2 D
3V~ t8!V~ t9!cos~vt8!cos~vt9!, ~17!

with f (t) given by

f ~ t ![E
22

2

dmr~m!e2mt. ~18!
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The autocorrelation and response functions, together with
energy density, read

C~ t,tw!5
1

V~ t !V~ tw! F f S t1tw

2 D
1h2E

0

t

dt8E
0

tw
dt9 cos~vt8!cos~vt9!V~ t8!

3V~ t9! f S t1tw2t82t9

2 D G ,
~19!

R~ t,tw!5
V~ tw!

V~ t !
f S t2tw

2 D ,

e~ t !52
z~ t !

2
52

1

2

d ln@V~ t !#

dt
.

Equation ~17! determinesV(t) and, consequently, all dy
namic quantities. Unfortunately, it cannot be complete
solved analytically except in some asymptotic limits.

Two special cases have been studied previously, nam
the zero field behavior of the model, and the case of a
field. In the former, as discussed in Sec. II, there is no fin
equilibration time belowTc51 and the system ages forev
@46,47#. In the presence of a dc magnetic field of amplitudeh
@48#, Eq. ~17! yields V(t);exp@l0(h)t#, where l0(h)[(2
1h2)/A11h2. The main effect of the field is to introduce
new time scalet r

0(h)[@l0(h)22#21 in the problem. For
timestw!t r

0(h) after the quench, aging is observed as in t
zero-field case, whereas at later timestw@t r

0(h) the system
has reached its equilibrium state in a field: aging is int
rupted. The energy densitye(t) converges toe`(v50,h)
52(21h2)/(2A11h2).

At finite v, the numerical solution of Eq.~17! displayed
in Fig. 1 suggests the following asymptotic behavior:

FIG. 1. The functionV(t)exp(22t) in the three casesh50, h
52.5 andv50.8 ~glassy phase!, and h52.5 andv50.6 ~liquid
phase!, from bottom to top. The points are the direct integration
Eq. ~17!, while the full lines are fits to Eqs.~20!. Except at very
short times, the approximate forms in Eqs.~20! yield the correct
behavior.
2-5
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h,h!~v!, V~ t !;c
e2t

t3/4
@b cos~2vt1f!11#,

~20!

h.h!~v!, V~ t !;c8 exp@l~v,h!t1a cos~2vt1f!#,

where c, c8, a, b,1, andf are numerical constants, an
with l(v,h).2. This means that if the amplitude of th
driving force is sufficiently small, the ac field does not intr
duce a new time scale, and a full aging behavior is obser
For stronger amplitudes of the field, a time scale defined

t r~v,h![@l~v,h!22#21 ~21!

is generated, and the relaxation time becomes finite: agin
stopped by the driving force. Hence there is a critical fieldh!

separating these two different regimes. It is clear from Fig
that the agreement between Eqs.~20! and the numerical so
lution is very good, after a short transient. In the followin
we characterize these two phases, as well as the trans
between them.

B. Transition line in the plane „v,h…

We have seen that, at a fixed pulsationv, there exists a
well-defined transition line where the relaxation time in an
field diverges, allowing one to distinguish between ‘‘glass
and ‘‘liquid’’ states. We anticipate the discussion of Se
III A to emphasize that this transition is a nonequilibriu
phase transition, which is hence of a different nature that
transition taking place atTc in the absence of the driving
force.

The transition lineh!(v) may be understood and est
mated from a simple physical argument. Atv50, the dc
field introduces a finite relaxation timet r

0(h). The most naive
requirement for the system to retain a finite relaxation ti
in an ac field of periodt is given byt r

0(h)&t. The transition
line is then estimated by the relation

t r
0~h!!.t⇔v}F 21h!2

A11h!2
22G . ~22!

A more refined computation can also be performed. Us
the fact that, whenh.h!, V(t) is given asymptotically by
Eq. ~20! with l.2, allows us to neglect the termf (t) on the
right hand side of Eq.~17!; thus

V~ t !2.h2E
22

2

dmr~m!e2mtF E
0

t

dt8 cos~vt8!V~ t8!e2mt8G2

.

~23!

Inserting the formV(t)5exp@lt1B(t)#, and formally inte-
grating by parts, yields
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eB(t)5h2E
22

2

dmr~m!

3FReS eivt(
k50

`
~21!k

~l~v,h!2m1 iv!k11
•

dkeB(t)

dtk
D G 2

.

~24!

Since the functionB(t) is periodic with the angular velocity
2v, this corresponds to a development in powers ofv. In the
small frequency limit, the equation can be closed by keep
only the leading terms of the development, and this yield
relation between (l,v,h),

p

h2
5E

21

1

dx
A12x2

~l22x!21v2
, ~25!

from which we estimate the transition line where the tim
scalet r(v,h), given in Eq.~21!, diverges. This is equivalen
to the conditionl(v,h!)52. It is easily shown that, in the
small frequency limit, the scalingt r

0(h!).t is recovered, in
accordance with our heuristic argument@Eq. ~22!#. In Fig. 2,
the analytical estimate for the transition lineh!(v) is com-
pared with its direct numerical estimation, and with our he
ristic argument. Also plotted is the small frequency behav
of the critical field,h!}v0.25.

Moreover, Equation~25! implies

lim
v→0

l~v,h!5l0S h

A2
D , ~26!

which means that, in the limitv→0, the field acts as a
constant field with an amplitude given by its root me
square value, which is physically reasonable. Importan
enough, this means that the effect of a dc field withv strictly
zero, and the limit of an ac field with vanishing frequenc
are different. In the casep52 this feature has no effect o
the value of the transition fieldh!, since it vanishes in both
cases. However, whenp>3 we shall find a nontrivial con-
sequence of this result~see Sec. IV!.

FIG. 2. The transition lineh!(v), estimated by analytical, nu
merical, and heuristic tools, together with the small frequency
havior h!}v0.25.
2-6
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GLASSY SYSTEMS UNDER TIME-DEPENDENT DRIVING . . . PHYSICAL REVIEW E63 051302
C. Below the transition hËh!
„v…: aging in an ac field

Below the transition, Eq.~20! shows that the energy den
sity slowly converges toward its asymptotic valuee`(v,h
,h!)521 as a power lawe(t)2e`;t21 with a superim-
posed oscillation at a frequencyv/p. This asymptotic value
is independent ofh. A slow ~here a power law! convergence
of one time quantities is typical of aging systems@11#. The
angular velocity 2v is expected since Eq.~6! remains un-
changed by the transformationst→t1p/v, sm→2sm , and
z→z. The constraintz(t), and the energy density, are the
p/v periodic.

That the TTI is also lost is demonstrated by looking
two-time quantities, typically correlation functions. The b
havior of C(t,tw) is represented in Fig. 3. This figure als
shows the interesting feature that the dynamics can be
composed into two well-separated time scales. At short t
separationt2tw , the time scale for the approach to the p
teau atC5qEA ~note thatqEA51 at T50) does not depend
on tw , whereas the decay from the plateau toward zero ar
in a second time scale that clearly depends ontw . During the
waiting-time-dependent decay, the curves have oscillatio
Quantitatively, the behavior of the correlation function is e
tirely dominated at long times by the termC(t,tw); f @(t

FIG. 3. Correlation function of thep52 model atT50 for h
50.5 andv51, and waiting timestw55, 10, and 20, from bottom
to top. The points fall on the discrete timest5nt, with n an integer.

FIG. 4. Parametric plot of the integrated response correlatio
the p52 model atT50 for h50.5 andv51, and waiting times
tw55, 10, and 20. For the FDT to be satisfied, the points have to
on the vertical line. The inset represents the same data, but for t
t5nt; the symbols are the same as in Fig. 3.
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1tw)/2#/@V(t)V(tw)#. This implies that, apart from the osci
lation, the correlation scales ast/tw for t@tw ; we have
checked this point numerically.

In tapping experiments, data are obtained for times of
form t5nt, wheren is an integer. We have represented the
data by points in Fig. 3, and the experimental measurem
would be very similar to the usual aging case.

The response function is analyzed in Fig. 4, where
parametric plot of the integrated response against the co
lation is built. As expected, there are strong violations of
FDT. However, these violations are similar to those enco
tered in the relaxational case, in the sense that there are
distinct behaviors, depending on the time scale conside
For a time separationt2tw!tw , the FDT is not satisfied
and no effective temperature can be defined. For the sec
time scalet*tw and longer, on the contrary, all points fa
nicely on a straight line, with a superimposed oscillatio
Bound~12! shows, however, that the deviation from the FD
can only be significant at large times, when bo
]C(t,tw)/]tw and R(t,tw), integrated over a period, ar
small. This is confirmed by Fig. 4.

The inset of Fig. 4 showsx(C) for the discrete timest
5nt. If one uses this stroboscopic measurement, it rema
clear that the FDT modifications are well accounted for
ansatz~10!. Analytically, neglecting, as above, the seco
term in the correlation function, the effective temperatu
defined through Eq.~9! scales asTEFF;tw

1/2→`. An infinite
effective temperature is also present in the relaxational
namics of this model, and is typical of domain growth mo
els.

With these simple considerations we have argued that
effect of a small ac field does not change the aging beha
of this model atT50. This is to be confronted to the effec
of non-Hamiltonian perturbations that change the aging s
ing, as seen, for instance, in the correlation function t
becomesC(t,tw); f @exp(Atw2At)# @18#. At nonzero tem-
perature, shearlike forces introduce a finite relaxation tim
after which the dynamics is stationary. We have not solv
the p52 model analytically at finite temperature in an
field, but the numerical solution of the full equations su

of

ie
es

FIG. 5. Time dependence of the energy density under an ac
with amplitudeh50, 0.3, 0.6, and 1~from bottom to top!, and
angular velocityv51. The curve forh51 approaches rapidly an
asymptote, wherease(t) still evolves at large times for the othe
cases.
2-7
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FIG. 6. Each panel shows th
autocorrelationC(t1tw ,tw) as a
function oft, for four values of the
waiting time tw53, 12, 49, and
198, atT50.2. The angular veloc-
ity of the applied field isv51. In
panels ~a!–~c! the scale is loga-
rithmic, the amplitudes of the ap
plied fields areh50, 0.1, and 1,
and the system is in its glass
phase. In panel~d! the scale is lin-
ear,h52, and the slow dynamics
is suppressed.
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gests that there is a finite region of the phase diag
(T,h,v) in which aging effects survive. This explicitly
shows that the effects of shear and tapping are rather di
ent.

D. Above the transition: Driven steady state

Above the transition, the situation is simpler. After a tim
scalet r(v,h)5@l(v,h)22#21, the slow dynamics is lost
Relation~25! implicitly determinesl, which is an increasing
function of the amplitudeh of the driving force. In the sta-
tionary state, the energy density oscillates with an ang
velocity 2v around its asymptotic valuee`(v,h.h!)5
2l(v,h)/2. The behavior of the correlation is dominated
the second term in Eq.~19!. This shows that it decays towar
zero on a time scale of ordert r(v,h): there is no more aging
05130
m
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IV. BEHAVIOR FOR pÐ3

Going beyond the solution of the unperturbed case@50# to
solve the set of coupled integro-differential equations~4!
analytically is a very hard task. In order to illustrate the ma
properties of the solution, we solved Eqs.~4! numerically, by
constructing a two-time solution step by step in time. W
first demonstrate that in the casep>3, there also exists a
transition line below which glassy properties of the undriv
model persist, and then study the FDT violations in bo
phases.

A. Evidence of a dynamical transition

Let us recall first the effect of a dc magnetic field
amplitudeh on the system@63#. In contrast to the spherica
e

.1
FIG. 7. Each panel shows th
autocorrelationC(t1tw ,tw) as a
function oft, for four values of the
waiting time tw53, 12, 49, and
198 atT50.2. The strength of the
applied field ish51 and the fre-
quencies arev50, 0.1, 1, and 10
from panels~a! to ~d!. The transi-
tion in an ac field of amplitudeh
51, from the liquid to the glassy
phase, occurs at a frequency 0
,vc,1.
2-8
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GLASSY SYSTEMS UNDER TIME-DEPENDENT DRIVING . . . PHYSICAL REVIEW E63 051302
Sherrington-Kirkpatrick model, the spin glass phase may
ist in a dc magnetic field. There are both dynamic and st
transitions between the spin glass and the paramagn
phases. AtT50.2, the dynamic transition takes place
h!(v50).1.1 @63#.

As in the casep52, we begin our study by focusing o
the behavior of the energy densitye(t). This is displayed in
Fig. 5 at temperatureT50.6 and angular velocityv51, for
different field amplitudes. The long time behavior ofe(t)
indicates that the transition occurs for a field 0.6,h!,1.0 at
this frequency. The asymptotic value of the energy den
increases slightly below the transition, and reaches a m
larger value, whenh.h!.

In the following we concentrate on the temperatureT
50.2.0.32Tc , i.e., well below the zero-field transition. W
focus first on the dependence of the two-time autocorrela
functions on the amplitude of the applied field. In Fig 6~a!,
the field ish50, and we observe the usual aging@50#. It is
then clear that aging is still present if the field is not t
strong, h50.1 and 1 in Figs. 6~b! and 6~c!, whereas at a
stronger field,h52 in Fig. 6~d!, the correlation tends very
rapidly to zero, with a superimposed oscillation. These
servations reinforce the evidence in favor of a dynamic tr
sition which, atT50.2, occurs at a field strength 1,h!,2
for v51.

We turn now to the question of identifying the critical lin
in the v direction. Figure 7 shows the autocorrelation fun
tion at fixed amplitude of the applied field and several valu
of the angular velocity. In Fig. 7~a!, the frequency is zero
and aging is observed with a two-step decay of the corr

FIG. 8. The full line is a schematic representation of the tran
tion line h!(v) for p>3. The angular velocity in the four panels i
Fig. 7 move from left to right along the horizontal dashed line~see
the text for more details!.
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tion. Note that the second decay is toward a valueq0.0, as
opposed to the zero-field case@63#. The frequency is in-
creased in Figs. 7~b!–7~d!. At intermediate frequency@Fig.
7~b!#, aging is suppressed. Whenv is further increased
@Figs. 7~c! and 7~d!# it is clear that the glassy phase is ree
trant.

It is of course very difficult to determine the transitio
line h!(v) with accuracy by the numerical solution of th
dynamical equations. We are hence not able to draw a fig
similar to Fig. 2 forp>3. In Fig. 8 we show a schemati
representation of this critical line with the feature, alrea
encountered forp52, that the limitv→0 is peculiar. From
the numerical solution atv.0, it seems that

lim
v→0

h!~T,v!,h!~T,v50!. ~27!

This is represented in Fig. 8, and explains the reentranc
the glassy phase described in Fig. 7, when the freque
increases. Note, however, that we cannot numerically disc
the possibility of a nonmonotonic, but smooth, behavior
the critical line atv,0.1.

B. Fluctuation-dissipation theorem

We now turn to a study of the FDT. In Fig. 9 we show th
evolution of thex vs C plots with tw . In Fig. 9~a!, the sys-
tem is not in a glassy phase. Strong violations of the FDT
observed, but no effective temperature can be defined.
system is athermal.

In Fig. 9~b!, conversely, the system is in its glassy pha
One then recovers ax(C) curve that is very similar to the
one in zero field. The first part is almost a straight line w
slope21/T, while the second decay follows a temperatu
21/TEFF. As mentioned in Sec. III, the fact that, for sma
time scales, the FDT is nearly satisfied results directly fr
bound~12!.

The nontrivial outcome of this study is the fact that
well-defined TEFF, which exists in the nondriven system
may still be defined below the dynamical transition, in t
presence of the drive. A stroboscopic construction, like
one in Sec. III C, will yield a perfect straight line that defin
TEFF unambiguously.

The actual value of the effective temperature may dep
on various parameters. We have searched for depende
on the frequency and amplitude of the ac field. Within t
range of parameters we could numerically explore, we h
not observed large dependences. Figure 10 displays thex vs

i-
FIG. 9. Thex(C) curves atT
50.2 with an applied ac field of
strengthh51 and frequenciesv
50.1 ~liquid phase! and v510
~glassy phase!, for different wait-
ing timestw56, 12, 24, and 49.
2-9
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FIG. 10. Thex(C) curves atT50.2. In panel~a!, the two curves correspond toh50, andh51, andv51. In both cases the system
in its glassy phase. In panel~b! the two curves correspond tov51 and 10, both with an amplitudeh51. The lines are guides to the ey
and they have the slope of the second part of the decay.tw524 for all curves displayed.
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C curves for two choices of field amplitudes, and for tw
choices of angular velocity at fixed field amplitude, the d
pendence is indeed weak.

C. Beyond the mean field: effect of trapping states

In this section we present results from a numerical sim
lation of the Ising version of thep-spin model in an ac field
in the particular casep53. We focus on the time depen
dence of the energy densitye(t)5N21( i , j ,kJi jksisjsk and
the magnetization densitym(t)5N21( isi(t). The sizesN
550 and 150 have been used, together with a constant
peratureT50.01, in all simulations. The amplitude and th
frequency of the magnetic field have been varied.

The interest of such an investigation is that the finiteN
behavior of the model is accessible. The system is hence
to escape and visit the trapping states described in Sec.
a finite time@18#. For this reason, the results presented in t
section cannot be obtained in a mean-field approach.

In the absence of magnetic field, the energy density r
idly approaches its asymptotic value. At such a low tempe
ture, the system reaches a metastable stable, characteriz
a nearly zero magnetization density, and cannot esc
within the numerical time window. Figure 11~left! illustrates
this ‘‘jammed’’ behavior. The value of the energy dens
depends on the initial conditions, which means that the s
tem may be blocked in different trapping states when it st
from different initial conditions.
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The influence of an ac magnetic field on this jamm
behavior is evident in Fig. 11~right!. Both the energy and the
magnetization density are oscillating functions, and their
havior is intermittent. For some time windows, both quan
ties have an evolution which varies considerably from per
to period. For other time windows, conversely, the differe
cycles are very similar. This can be interpreted as being
to the presence of the trapping~jammed! states: the system
usually evolves inside one of the trapping states, with
escaping, and all the periods are equivalent. However, fr
time to time, the driving force is able to make the syste
escape the state, and the evolution is very erratic until
other trapping state is found.

This is confirmed in Fig. 12, where the energy density
represented as a function oft for times of the formt5nt.
The long horizontal plateaus are the moments where the
tem is jammed, whereas, between the plateaus, the en
density changes values very rapidly. As in Ref.@18#, in Fig.
12 we show that the time evolution ofe(t) is ‘‘self-similar,’’
in the sense that zooming on a time window makes sma
plateaus become visible while the overall evolution looks
same.

This intermittent behavior is clearly reminiscent of th
behavior encountered in some granular experiments, wh
the powder is very slowly perturbed, like the ones perform
by the Jussieu group@64#. In particular, it would be very
interesting to perform a more careful analysis of the stati
FIG. 11. Evolution of the energy~bottom curve! and magnetization~top curve! densities without~left! and with ~right! magnetic field.
The parameters of the field areh52 andv50.01. Note that the time range in the left figure is much shorter, since bothe(t) andm(t) are
constant for timest.50.
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FIG. 12. Same parameters a
in Fig. 11. Evolution of the energy
density with a magnetic field.
Only one point per period is rep
resented.
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cal properties ofe(t) such as, e.g., measuring the statistics
trapping times@64#. We also note that this phenomenology
very similar to the one of the so-called ‘‘trap model’’@65#,
that was extended by Head to describe the phenomeno
of granular materials@36#.

Finally, it is interesting to stress that even within o
cycle of the field, the evolution is not regular at all. This c
be seen nicely in Fig. 13, where the fieldh(t) is represented
as a function of the magnetizationm(t). This is the usual
view of a hysteresis loop in ferromagnetic systems. It is cl
that the shape of the loops is far from elliptic, and that
system evolves in steps, rather than continuously: this
analogous to the Barkhausen noise@66#. The overall shape o
a cycle depends drastically on whether the system is trap
or not. It is beyond the scope of this paper to study th
loops in detail, but we emphasize that this~mean-field!
model could be an interesting starting point to study
Barkhausen noise, in the spirit of Ref.@66#.

V. SUMMARY AND LINK WITH GRANULAR MATTER

Phase diagram. Our findings concerning the behavior o
glassy systems under a time-dependent driving force
summarized in Figs. 8 and 14. For any fixed frequency of
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applied field, and a temperatureT,Tc , whereTc is the zero-
drive glass transition temperature, there are two regimes~I!
At small drive, the system exhibits slow~‘‘glassy’’ ! dynam-
ics. ~II ! At large drive, there is no slow dynamics. There th
exists a well-defined critical drive separating these two
gimes. On the other hand, if we work at a fixed drive a
modify the angular velocity, the system undergoes a tra
tion from a liquidlike phase at low~though nonvanishing!
frequency to a glasslike phase at high frequency. This re
is displayed in Fig. 8.

The phase diagram in Fig. 14 is the analog to the (T,G)
plane of the three-dimensional phase diagram proposed
Liu and Nagel@7#. We have then investigated its properti
in detail, which to our knowledge has not been done so fa
the case of a time-dependent driving force. Contrary to p
vious phenomenological modelings of the dynamics
granular matter, assuming that the driveG is related~in a
possibly nonlinear way! to the temperatureT of a glassy
model borrowed from statistical mechanics, here we prop
to study precisely the interplay betweenT andG as an inter-
mediate step from glassy to granular materials. The con
sions we draw are then directly pertinent to gently driv
granular materials or slow granular rheology.
.
FIG. 13. Hysteresis loops
Panels~a! and ~b! correspond to
the period of rapid motion, while
panels~c! and ~d! correspond to
interval when the system is
trapped. N550, T50.01, h52,
andv50.1.
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L. BERTHIER, L. F. CUGLIANDOLO, AND J. L. IGUAIN PHYSICAL REVIEW E63 051302
We emphasize once again that the model we have stu
is not intended to describe granular matter in full micr
scopic detail, but rather to act as a source of inspiration
the interpretation of numerical and experimental results
may also motivate new experimental measurements. H
ever, let us briefly summarize its dynamic behavior in t
context of existing data for granular matter.

One-time quantities. In phase~I!, one-time quantities~we
have focused on the energy density! typically decay toward
their asymptotic values as power laws. It is experimenta
established that the densityr(t) in a gently driven granular
system exhibits a very slow relaxation@1#. The parallel can
be drawn with the energy densitye(t) @or more precisely
with 21/e(t)# in glassy models. The seminal experiments
Chicago exhibited a logarithmic relaxation of the density@2#,
as found in all subsequent works@4,26–32,34–36#. ~Note
that Ref. @2# explicitly excluded a power law behavior!
However, the recent experiment of Nicolaset al. @3# showed
that the logarithmic law isnot a universal behavior, and tha
the time dependence may depend on the way the syste
perturbed. From a theoretical point of view, one could pre
a power law decay for any one-time quantity, since it do
not involve an intrinsic time scale, whereas the logarithm
law 1/ln(t/t0) explicitly introduces a time scalet0. In this
context, it is interesting to note that Barrat and Loreto@28#,
in their study of the Tetris model, showed that the fitti
parametert0 actually depends on the considered time w
dow; qualitativelyt0}tw . Head@36# already emphasized th
role of the time window on the fitting parameters, in partic
lar on the asymptotic value of the density.

In the context of glassy systems, it is a well-known fe
ture that the interpretation of data over a finite time wind
is always delicate. A typical example is provided by the ca
of dipolar glasses, where the dielectric constant for sam
prepared with different cooling rates seems to approach
ferent asymptotic values@15#.

Two-time quantities. In phase~II !, the model we have
studied also exhibits aging. Forp52, we find at/tw scaling
~in stroboscopic time! of the autocorrelation function, while
for p>3 a much more careful numerical analysis is need
to determine this law. Other glassy models perturbed with
forces may lead to other aging scalings. Generally speak
theoretical arguments@11# indicate that one can expect th
following behavior for any two-time functionF(t,tw),

FIG. 14. Temperature-drive phase diagram of a glassy sys
The vertical axis represents the typical amplitude of the driv
force: its precise definition depends on the specific experiment
sidered;Tc is the zero-drive glass transition temperature.
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F~ t,tw!;FS h~ t !

h~ tw! D , ~28!

in a given time scale.F and h are two model- system
dependent scaling functions. More complicated scalin
such as a sum of different terms like Eq.~28!, implying
several different time scales in the problem, are also p
sible.

Two-time quantities such as the density-density corre
tion function were numerically studied, clearly demonstr
ing that the TTI is lost@27,31,28#: the Tetris model exhibits
a ln(t)/ln(tw) behavior@27,28#, whereas the parking lot mode
shows at/tw aging behavior@31#.

An experimental determination of the scaling of two-tim
quantities will be useful to discriminate among the differe
models proposed to describe granular matter. This was
ready proposed in Refs.@27,28,31#, and amounts to an ex
perimental determination of the functionh(t) involved in
Eq. ~28!. Such experimental determinations in glassy s
tems are by now numerous. They have emphasized, on
one hand, the universality of the aging phenomena in m
microscopically different systems@12–16#; however, on the
other hand, they have also revealed subtle differences
tween them@11,13#.

Fluctuation-dissipation theorem violations. Our study has
shown that modifications of the FDT, rather similar to tho
observed foragingglassy systems, also arise in glassy mo
els driven by time-dependent forces. The parallel with gra
lar materials suggests that this may also happen in dri
powders.

The parametric plot we have built clearly shows th
driven glassy systems have two distinct time scales, wh
we interpret as in Refs.@8,9#. A fast one, which is essentially
independent of the waiting time, represents the individ
motion of grains: no effective temperature, in the sense
Eq. ~9!, can be defined here. Since the model we have use
itself thermal ~it uses a Langevin equation with a therm
noise!, the fast motion has a reminiscence of the tempera
of the bath~that may be zero!. In a more realistic model of
granular matter, it is likely that the fast motions will be com
pletely athermal. Conversely, the long time scale, grow
with the waiting time and giving rise to thet/tw relaxation,
represents large structural rearrangements in the powder.
results indicate that these slow degrees of freedom are t
malized at a well-defined effective temperature. We are c
fident that this result also holds in realistic models of gran
lar matter.

Again, numerical and experimental work could be used
check these predictions in granular materials. We h
shown that the two models studied here have different F
violations: thep52 case has an infinite effective temper
ture, whereas thep>3 models have a single finite effectiv
temperature. Other glassy models~for instance mean-field
spin glasses! have been shown to have a hierarchy of effe
tive temperatures when they are undriven, and shall proba
keep this behavior under driving forces@67#. We conjecture
that granular materials fall in thep>3 category, by analogy
with structural glasses. This prediction has to be tested
perimentally and numerically. It is not unlikely that differen

m.
g
n-
2-12



a
be

ri-
n
n
i

la
s
-
in

io
an
p

o
si
u
ie
io

ns
a

m

ea
ar
n
an

ig
n
o
d

er
on
ed
s

hi
e
ct

ng
ha
ike

i
n

nt
th
b-
e

ed:
f an
two

of
ion
e

c-

n a

e-
.
d

hat

dy-
p-
in

res
ble
to
of

-

ular
n-

co-
o-
in
in

e

r-

e

-

ex-

tic)

forc-

GLASSY SYSTEMS UNDER TIME-DEPENDENT DRIVING . . . PHYSICAL REVIEW E63 051302
microscopic models lead to different FDT violations; such
numerical determination could once again discriminate
tween them.

To study FDT violations during the compaction expe
ment, one has to compute, separately, the correlation fu
tion between two observables and its conjugated respo
function. In experiments for instance, the Nyquist relation
checked through dielectric measurements@14,68#. In granu-
lar materials, a natural choice is to check the Einstein re
tion between self-diffusion and the mobility of the grain
The results obtained in Refs.@69,70# are then very encour
aging, although the driving field is not time dependent
these studies. Nicodemi instead studied the fluctuat
dissipation relation between height-height displacement,
its conjugated integrated response to small shaking am
tude perturbations in the Tetris model@71#. In the low den-
sity regime ~fluidelike!, after a short transient, these tw
quantities are related by the usual FDT. In the high den
regime, the relation between these quantities shows m
stronger deviations from the FDT than the model we stud
here. This difference may be due to the kind of perturbat
used by Nicodemi. For a thermal system, the procedure
Ref. @71# is indeed similar to measuring the energy respo
to a temperature change: The resulting FDT properties
also found to be of an unusual type@72# in this case. How-
ever, the notion of an effective temperature@52# implies that
the FDT relations of all observables evolving on the sa
time scale should be identical. As suggested in Refs.@28,69#,
an interesting open question is the following: does a m
surement in the Tetris model done with a more stand
infinitesimal perturbation lead to the same FDT relatio
This point deserves a more detailed investigation in this
other glassy models.

The dynamic transition, and the regime (II). We have
found a well-defined transition in the phase diagram of F
14. This is in complete agreement with experimental a
numerical observations of the existence of a critical value
the driveG!, below which glassy effects may be observe
The existence of this dynamical transition provides a v
natural context for the interpretation of the numerous n
equilibrium effects encountered in granular matter. Inde
the transition line in the Fig. 14 links the standard gla
transition arising atT5Tc, andG50 in the glassy model to
the dynamical transition arising atT50 andG5G! in the
driven dynamics of athermal systems. In our opinion, t
result gives a nice theoretical support to the analogy betw
glasses and granular materials, making a deep conne
between the two situations.

We wish to emphasize that it was not evidenta priori that
the transition could survive a finite time-dependent drivi
force. This is one of the main results of this paper, and it
to be compared to the very different effect of shearl
forces. Indeed, an infinitesimal shearlike perturbation
enough to introduce a finite time scale in this model, a
aging is hence interrupted@18,21#.

The liquid regime~II ! is less interesting in the prese
context, since no slow dynamics is present. Let us stress
the system is still strongly driven, and hence no ‘‘equili
rium’’ state, in the sense of statistical mechanics, is reach
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In particular, no effective FDT temperature can be defin
the system is completely athermal. The very existence o
effective temperature relies indeed on the existence of
well-separated time scales, allowing the slow degrees
freedom to thermalize and the susceptibility and correlat
parametric curves of Fig. 9~a! are not very useful to describ
this non-equilibrium situation.

VI. CONCLUSION: TOWARD A THERMODYNAMICAL
DESCRIPTION OF SLOW GRANULAR RHEOLOGY?

The interpretation of FDT violations in terms of an effe
tive temperatureTEFF was developed in Ref.@52#. Having a
well-defined concept of temperature is a crucial first step i
thermodynamical description of granular materials@73#. It is
then important to discuss the possibility of a link with pr
vious thermodynamical concepts in the granular literature

The notion of a ‘‘granular temperature’’ was introduce
to extend thermodynamics to strongly perturbed powders@1#.
In analogy with the kinetic gas theory, it was assumed t
the distribution of the grain velocityv is Maxwellian. Via
the equipartition relation, one getsT}^v2&. We have been
concerned with a weakly perturbed regime, where the
namics is slow. This hydrodynamic definition is not su
posed to be relevant in this case. This is also well known
the field of glasses, where nontrivial effective temperatu
are known to exist while the kinetic energy is an observa
that very rapidly equilibrates with its environment, leading
a kinetic temperature that coincides with the temperature
the bath. Very recently@74#, an attempt to extend the hydro
dynamic theory to a regime where the grains arenot fluid-
ized was proposed, also using the concept of kinetic gran
temperature. It would then be very interesting to try to u
derstand the two concepts in a unified way.

More related to ours is the approach of Mehta and
workers@8#, discussed in Sec. I. This phenomenological tw
step, two-temperature model finds a nice justification with
the scenario emerging from our results. This model was
fact inspired by the illuminating work initiated in the lat
1980s by Edwards and his collaborators@38#. The postulated
thermodynamic relations in analogy with the usual ‘‘the
mal’’ thermodynamics, where the volumeV plays the role of
the internal energyU. In this approach, the entropy is th
logarithm of the number of configurations with volumeV.
The so-called compactivityX is the analog of the tempera
ture, and it is defined as@38#

1

X
[

]S

]V
, ~29!

still by analogy with the usual definitionT21[]S/]U. The
connection between the compactivityX and the FDT tem-
peratureTEFF discussed in this paper has already been
plored @10,57,58,62,71#. Crucially for our study,Edwards’
definition of the compactivity coincides with the (asympto
FDT effective temperaturedefined in Eq.~14!. This result
holds for mean-field models like the one discussed here@62#,
as well as in the lattice gas model studied in Ref.@57#. How-
ever, these studies have been done without an external
2-13
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ing. It would be very interesting to extend the numeric
analysis of Ref.@57# to the same model now driven by an a
force.

We have obtained here that the existence of an effec
temperature for the slow decay resists a finite ac force. T
supports the conjecture that definitions~14! and~29! may be
of fundamental interest for the study of glassy and granu
materials. Computing them in realistic models is then a ch
lenge for future research@57,58,62,75#. In this respect, very
recent works@76# studying spin models on random grap
may give some insights into the role played by metasta
states, which can have an important influence on the dyn
ics, as we showed in Sec. IV C.

In conclusion, we have found that the study of drive
od
ce

S
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.

n

M

d

. F

P.
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glassy systems provides a theoretical framework to und
stand the slow granular rheology. The existence of a dyna
cal transition well justifies the use of ‘‘modified glassy mo
els’’ to describe granular materials. The existence of
effective temperature for the slow degrees of freedom p
vides, in particular, a nice theoretical basis to previous ‘‘th
mal’’ models for granular matter, and to the seminal a
proach of Edwards.
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@5# É. Falcon, R. Wunenburger, P. E´vesque, S. Fauve, C. Chabo
Y. Garrabos, and Daniel Beysens, Phys. Rev. Lett.83, 440
~1999!, and references therein.

@6# S. F. Edwards and D. V. Grinev, e-print cond-mat/9905114
@7# A. J. Liu and S. R. Nagel, Nature~London! 396, 21 ~1998!.
@8# A. Mehta, R. J. Needs, and S. Dattagupta, J. Stat. Phys.68,

1131 ~1992!.
@9# A. Mehta and G. C. Barker, J. Phys.: Condens. Matter12,

6619~2000!; G. C. Barker and A. Mehta, Phys. Rev. E47, 184
~1993!; A. Mehta and G. C. Barker, Phys. Rev. Lett.67, 394
~1991!; G. C. Barker and A. Mehta, Phys. Rev. A45, 3435
~1992!.

@10# J. Kurchan, e-print cond-mat/9812347; J. Phys.: Conde
Matter 12, 6611~2000!.

@11# J.-P. Bouchaud, L. F. Cugliandolo, J. Kurchan, and
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